Monday, November 18, 2024
Google search engine
HomeData Modelling & AIReach the numbers by making jumps of two given lengths

Reach the numbers by making jumps of two given lengths

Given integers k, d1, d2 and an integer array arr[]. Starting from number k you are allowed to make jumps of size d1 and d2 i.e. all the possible moves from k are: 

  • k + d1 and k – d1
  • k + d2 and k – d2

The task is to find which of the numbers from the array are reachable from k making any number of jumps and any given jump is either of size d1 or d2. For every number print 1 if its reachable else print 0.

Examples: 

Input: k = 10, d1 = 4, d2 = 6, arr[] = {10, 15, 20} 
Output: 1 0 1 
10 can be reached from k with no extra move. 
20 can be reached with k + d1 + d2 = 10 + 4 + 6 = 20

Input: k = 8, d1 = 3, d2 = 2, arr[] = {9, 4} 
Output: 1 1  

Approach: 

Any number x that is reachable from k with jumps d1 or d2 will be of the form x = k + (i * d1) + (j * d2) where i and j are integers. 
Let the GCD of d1 and d2 be gcd. Since, gcd divides both d1 and d2. Therefore we can write d1 = m1 * gcd and d2 = m2 * gcd where m1 and m2 are integers 
And x = k + gcd * (i * m1 + j * m2) = k + M * gcd
So, any number x that is reachable from k should satisfy (x – k) % gcd = 0.

Below is the implementation of the above approach: 

C++




// C++ implementation of the approach
#include <algorithm>
#include <iostream>
using namespace std;
 
// Function that returns the vector containing the
// result for the reachability of the required numbers
void reachTheNums(int nums[], int k, int d1, int d2, int n)
{
    int i, ans[n] = { 0 };
    int gcd = __gcd(d1, d2);
 
    for (i = 0; i < n; i++) {
        int x = nums[i] - k;
 
        // If distance x is coverable
        if (x % gcd == 0)
            ans[i] = 1;
        else
            ans[i] = 0;
    }
 
    for (i = 0; i < n; i++)
        cout << ans[i] << " ";
}
 
// Driver code
int main()
{
    // Numbers to be checked for reachability
    int nums[] = { 9, 4 };
    int n = sizeof(nums) / sizeof(nums[0]);
    // Starting number K
    int k = 8;
 
    // Sizes of jumps d1 and d2
    int d1 = 3, d2 = 2;
 
    reachTheNums(nums, k, d1, d2, n);
 
    return 0;
}


Java




// Java implementation of the approach
 
import java.io.*;
class GFG {
// Recursive function to return gcd of a and b
    static int __gcd(int a, int b)
    {
        // Everything divides 0 
        if (a == 0)
          return b;
        if (b == 0)
          return a;
        
        // base case
        if (a == b)
            return a;
        
        // a is greater
        if (a > b)
            return __gcd(a-b, b);
        return __gcd(a, b-a);
    }
 
 
     
 
// Function that returns the vector containing the
// result for the reachability of the required numbers
static void reachTheNums(int nums[], int k, int d1, int d2, int n)
{
    int i;
    int ans[] = new int[n];
    int gcd = __gcd(d1, d2);
 
    for (i = 0; i < n; i++) {
        int x = nums[i] - k;
 
        // If distance x is coverable
        if (x % gcd == 0)
            ans[i] = 1;
        else
            ans[i] = 0;
    }
 
    for (i = 0; i < n; i++)
        System.out.print(ans[i] + " ");
}
 
// Driver code
 
 
    public static void main (String[] args) {
        // Numbers to be checked for reachability
    int nums[] = { 9, 4 };
    int n =nums.length;
    // Starting number K
    int k = 8;
 
    // Sizes of jumps d1 and d2
    int d1 = 3, d2 = 2;
 
    reachTheNums(nums, k, d1, d2, n);
    }
}
 
// This code is contributed by inder_verma..


Python3




# Python3 implementation of the approach
import math as mt
 
# Function that returns the vector
# containing the result for the reachability
# of the required numbers
def reachTheNums(nums, k, d1, d2, n):
 
    ans = [0 for i in range(n)]
 
    gcd = mt.gcd(d1, d2)
 
    for i in range(n):
        x = nums[i] - k
 
        # If distance x is coverable
        if (x % gcd == 0):
            ans[i] = 1
        else:
            ans[i] = 0
 
    for i in range(n):
        print(ans[i], end = " ")
 
# Driver code
 
# Numbers to be checked for
# reachability
nums = [9, 4]
n = len(nums)
 
# Starting number K
k = 8
 
# Sizes of jumps d1 and d2
d1, d2 = 3, 2
 
reachTheNums(nums, k, d1, d2, n)
 
# This code is contributed
# by mohit kumar 29


C#




// C# implementation of the above approach
 
using System ;
 
class GFG {
     
    // Recursive function to return gcd of a and b
    static int __gcd(int a, int b)
    {
        // Everything divides 0
        if (a == 0)
        return b;
        if (b == 0)
        return a;
         
        // base case
        if (a == b)
            return a;
         
        // a is greater
        if (a > b)
            return __gcd(a-b, b);
             
        return __gcd(a, b-a);
    }
 
 
     
 
    // Function that returns the vector containing the
    // result for the reachability of the required numbers
    static void reachTheNums(int []nums, int k, int d1, int d2, int n)
    {
        int i;
        int []ans = new int[n];
        int gcd = __gcd(d1, d2);
     
        for (i = 0; i < n; i++) {
            int x = nums[i] - k;
     
            // If distance x is coverable
            if (x % gcd == 0)
                ans[i] = 1;
            else
                ans[i] = 0;
        }
     
        for (i = 0; i < n; i++)
            Console.Write(ans[i] + " ");
    }
 
    // Driver code
    public static void Main () {
        // Numbers to be checked for reachability
    int []nums = { 9, 4 };
    int n =nums.Length;
    // Starting number K
    int k = 8;
 
    // Sizes of jumps d1 and d2
    int d1 = 3, d2 = 2;
 
    reachTheNums(nums, k, d1, d2, n);
    }
    // This code is contributed by Ryuga
}


PHP




<?php
// PHP implementation of the approach
// gcd function
function GCD($a, $b)
{
    if ($b == 0)
        return $a;
    return GCD($b, $a % $b);
}
 
// Function that returns the vector
// containing the result for the
// reachability of the required numbers
function reachTheNums($nums, $k, $d1,
                             $d2, $n)
{
    $i = 0; $ans = array(0, 0);
    $gcd = GCD($d1, $d2);
 
    for ($i = 0; $i < $n; $i++)
    {
        $x = $nums[$i] - $k;
 
        // if distance x is coverable
        if ($x % $gcd == 0)
            $ans[$i] = 1;
        else
            $ans[$i] = 0;
    }
 
    for ($i = 0; $i < $n; $i++)
    echo $ans[$i] . " ";
}
 
// Driver Code
 
// Numbers to be checked for reachability
$nums = array(9, 4);
$n = 2;
 
// Starting number $K
$k = 8;
 
// Sizes of jumps $d1 and $d2
$d1 = 3; $d2 = 2;
 
reachTheNums($nums, $k, $d1, $d2, $n);
     
// This code is contributed by Adesh Singh1
?>


Javascript




<script>
// javascript implementation of the approach
 
    // Recursive function to return gcd of a and b
    function __gcd(a , b)
    {
     
        // Everything divides 0
        if (a == 0)
            return b;
        if (b == 0)
            return a;
 
        // base case
        if (a == b)
            return a;
 
        // a is greater
        if (a > b)
            return __gcd(a - b, b);
        return __gcd(a, b - a);
    }
 
    // Function that returns the vector containing the
    // result for the reachability of the required numbers
    function reachTheNums(nums , k , d1 , d2 , n)
    {
        var i;
        var ans = Array(n).fill(0);
        var gcd = __gcd(d1, d2);
 
        for (let i = 0; i < n; i++)
        {
            var x = nums[i] - k;
 
            // If distance x is coverable
            if (x % gcd == 0)
                ans[i] = 1;
            else
                ans[i] = 0;
        }
 
        for (let i = 0; i < n; i++)
            document.write(ans[i] + " ");
    }
 
    // Driver code
     
    // Numbers to be checked for reachability
    var nums = [ 9, 4 ];
    var n = nums.length;
     
    // Starting number K
    var k = 8;
 
    // Sizes of jumps d1 and d2
    var d1 = 3, d2 = 2;
 
    reachTheNums(nums, k, d1, d2, n);
 
// This code is contributed by aashish1995.
</script>


Output

1 1 

Complexity Analysis:

  • Time Complexity: O(N), since there runs a loop from 0 to (n – 1).
  • Auxiliary Space: O(N), since N extra space has been taken.
Feeling lost in the world of random DSA topics, wasting time without progress? It’s time for a change! Join our DSA course, where we’ll guide you on an exciting journey to master DSA efficiently and on schedule.
Ready to dive in? Explore our Free Demo Content and join our DSA course, trusted by over 100,000 neveropen!

RELATED ARTICLES

Most Popular

Recent Comments