Thursday, October 10, 2024
Google search engine
HomeData Modelling & AIRadius of the biggest possible circle inscribed in rhombus which in turn...

Radius of the biggest possible circle inscribed in rhombus which in turn is inscribed in a rectangle

Give a rectangle with length l & breadth b, which inscribes a rhombus, which in turn inscribes a circle. The task is to find the radius of this circle.
Examples: 
 

Input: l = 5, b = 3
Output: 1.28624

Input: l = 6, b = 4
Output: 1.6641

 

 

Approach: From the figure, it is clear that diagonals, x & y, are equal to the length and breadth of the rectangle. 
Also radius of the circle, r, inside a rhombus is = xy/2?(x^2+y^2). 
So, radius of the circle in terms of l & b is = lb/2?(l^2+b^2).
Below is the implementation of the above approach
 

C++




// C++ implementation of above approach
#include <bits/stdc++.h>
using namespace std;
 
// Function to find the radius
// of the inscribed circle
float circleradius(float l, float b)
{
 
    // the sides cannot be negative
    if (l < 0 || b < 0)
        return -1;
 
    // radius of the circle
    float r = (l * b) / (2 * sqrt((pow(l, 2) + pow(b, 2))));
    return r;
}
 
// Driver code
int main()
{
    float l = 5, b = 3;
    cout << circleradius(l, b) << endl;
 
    return 0;
}


Java




// Java implementation of above approach
 
import java.io.*;
 
class GFG {
     
// Function to find the radius
// of the inscribed circle
static float circleradius(float l, float b)
{
 
    // the sides cannot be negative
    if (l < 0 || b < 0)
        return -1;
 
    // radius of the circle
    float r = (float)((l * b) / (2 * Math.sqrt((Math.pow(l, 2) + Math.pow(b, 2)))));
    return r;
}
 
    // Driver code
    public static void main (String[] args) {
        float l = 5, b = 3;
    System.out.print (circleradius(l, b)) ;
    }
}
// This code is contributed by inder_verma..


Python3




# Python 3 implementation of
# above approach
from math import sqrt
 
# Function to find the radius
# of the inscribed circle
def circleradius(l, b):
     
    # the sides cannot be negative
    if (l < 0 or b < 0):
        return -1
 
    # radius of the circle
    r = (l * b) / (2 * sqrt((pow(l, 2) +
                             pow(b, 2))));
    return r
 
# Driver code
if __name__ == '__main__':
    l = 5
    b = 3
    print("{0:.5}" . format(circleradius(l, b)))
 
# This code is contribute
# by Surendra_Gagwar


C#




// C# implementation of above approach
using System;
 
class GFG
{
     
// Function to find the radius
// of the inscribed circle
static float circleradius(float l,
                          float b)
{
 
    // the sides cannot be negative
    if (l < 0 || b < 0)
        return -1;
 
    // radius of the circle
    float r = (float)((l * b) /
              (2 * Math.Sqrt((Math.Pow(l, 2) +
                   Math.Pow(b, 2)))));
    return r;
}
 
// Driver code
public static void Main ()
{
    float l = 5, b = 3;
    Console.WriteLine(circleradius(l, b));
}
}
 
// This code is contributed
// by inder_verma


PHP




<?php
// PHP implementation of above approach
 
// Function to find the radius
// of the inscribed circle
function circleradius($l, $b)
{
 
    // the sides cannot be negative
    if ($l < 0 || $b < 0)
        return -1;
 
    // radius of the circle
    $r = ($l * $b) / (2 * sqrt((pow($l, 2) +
                                pow($b, 2))));
    return $r;
}
 
// Driver code
$l = 5;
$b = 3;
echo circleradius($l, $b), "\n";
 
// This code is contributed by ajit
?>


Javascript




<script>
// javascript implementation of above approach
 
// Function to find the radius
// of the inscribed circle
function circleradius(l , b)
{
 
    // the sides cannot be negative
    if (l < 0 || b < 0)
        return -1;
 
    // radius of the circle
    var r = ((l * b) / (2 * Math.sqrt((Math.pow(l, 2) + Math.pow(b, 2)))));
    return r;
}
 
var l = 5, b = 3;
document.write(circleradius(l, b).toFixed(5)) ;
 
// This code is contributed by shikhasingrajput
</script>


Output: 

1.28624

 

Time complexity: O(logn) as it is using inbuilt sqrt  function

Auxiliary Space: O(1) since using constant variables

Feeling lost in the world of random DSA topics, wasting time without progress? It’s time for a change! Join our DSA course, where we’ll guide you on an exciting journey to master DSA efficiently and on schedule.
Ready to dive in? Explore our Free Demo Content and join our DSA course, trusted by over 100,000 neveropen!

RELATED ARTICLES

Most Popular

Recent Comments