Given a vector of pairs arr[] and Q queries in the form of pairs in an array Queries[], the task for each query is to check if there exists any pair with both the values smaller than those in the pair of the current query. If found to be true, then print “Yes”. Otherwise, print “No”.
Examples:
Input: arr[][] = {{3, 5}, {2, 7}, {2, 3}, {4, 9}}, Queries[][] = {{3, 4}, {3, 2}, {4, 1}, {3, 7}}
Output:
Yes
No
No
Yes
Explanation:
Query 1: Pair {2, 3} exists in arr[] which has both the values smaller than {3, 4}.
Query 2: No valid pair found in arr[] for {3, 2}.
Query 3: No valid pair found in arr[] for {4, 1}.
Query 4: Pair {2, 7} exists in arr[] for {3, 7}.Input: arr[][] = {{2, 1}, {4, 2}, {4, 4}, {7, 2}}, Queries[][] = {{2, 1}, {1, 1}}
Output:
Yes
No
Naive Approach: The simplest approach is to traverse the array Queries[][] and for each pair, traverse the given array of pairs and check if there exists any such pair whose corresponding values is greater than or equal to the pair {p1, p2} then print “Yes”. Otherwise, print “No”.
Time Complexity: O(N*K)
Auxiliary Space: O(1)
Efficient Approach: To optimize the above approach, the idea is to use Binary Search. Follow the steps below to solve this problem:
- Sort the array of pairs with respect to first element in the pairs in increasing order. If there exist 2 pairs whose first values are the same, then pairs are arranged on the basis of the second element of the pair.
- After sorting, traverse the array of pairs, and for all pairs having the same first value, replace the second value with the minimum of all the pairs having the same first value.
- Now, traverse the given Queries[] arrays and perform binary search on the array arr[] for each pair in it.
- If the pairs obtained from the above steps is smaller than the current pair in the Query[], then print “Yes” else print “No”.
Below is the implementation of the above approach:
C++14
// C++ program for the above approach #include <bits/stdc++.h> using namespace std; // Function that performs binary search // to find value less than or equal to // first value of the pair int binary_search(vector<pair< int , int > > vec, int n, int a) { int low, high, mid; low = 0; high = n - 1; // Perform binary search while (low < high) { // Find the mid mid = low + (high - low + 1) / 2; // Update the high if (vec[mid].first > a) { high = mid - 1; } // Else update low else if (vec[mid].first <= a) { low = mid; } } // Return the low index return low; } // Function to modify the second // value of each pair void modify_vec( vector<pair< int , int > >& v, int n) { // start from index 1 for ( int i = 1; i < n; i++) { v[i].second = min(v[i].second, v[i - 1].second); } } // Function to evaluate each query int evaluate_query(vector<pair< int , int > > v, int n, int m1, int m2) { // Find value less than or equal to // the first value of pair int temp = binary_search(v, n, m1); // check if we got the required // pair or not if ((v[temp].first <= m1) && (v[temp].second <= m2)) { return 1; } return 0; } // Function to find a pair whose values is // less than the given pairs in query void checkPairs(vector<pair< int , int > >& v, vector<pair< int , int > >& queries) { // Find the size of the vector int n = v.size(); // sort the vector based on // the first value sort(v.begin(), v.end()); // Function Call to modify the // second value of each pair modify_vec(v, n); int k = queries.size(); // Traverse each queries for ( int i = 0; i < k; i++) { int m1 = queries[i].first; int m2 = queries[i].second; // Evaluate each query int result = evaluate_query(v, n, m1, m2); // Print the result if (result > 0) cout << "Yes\n" ; else cout << "No\n" ; } } // Driver Code int main() { vector<pair< int , int > > arr = { { 3, 5 }, { 2, 7 }, { 2, 3 }, { 4, 9 } }; vector<pair< int , int > > queries = { { 3, 4 }, { 3, 2 }, { 4, 1 }, { 3, 7 } }; // Function Call checkPairs(arr, queries); return 0; } |
Java
// Java program for above approach import java.util.*; import java.lang.*; class GFG{ // Function that performs binary search // to find value less than or equal to // first value of the pair static int binary_search( int [][] vec, int n, int a) { int low, high, mid; low = 0 ; high = n - 1 ; // Perform binary search while (low < high) { // Find the mid mid = low + (high - low + 1 ) / 2 ; // Update the high if (vec[mid][ 0 ] > a) { high = mid - 1 ; } // Else update low else if (vec[mid][ 1 ] <= a) { low = mid; } } // Return the low index return low; } // Function to modify the second // value of each pair static void modify_vec( int [][] v, int n) { // start from index 1 for ( int i = 1 ; i < n; i++) { v[i][ 1 ] = Math.min(v[i][ 1 ], v[i - 1 ][ 1 ]); } } // Function to evaluate each query static int evaluate_query( int [][] v, int n, int m1, int m2) { // Find value less than or equal to // the first value of pair int temp = binary_search(v, n, m1); // check if we got the required // pair or not if ((v[temp][ 0 ] <= m1) && (v[temp][ 1 ] <= m2)) { return 1 ; } return 0 ; } // Function to find a pair whose values is // less than the given pairs in query static void checkPairs( int [][] v, int [][] queries) { // Find the size of the vector int n = v.length; // sort the vector based on // the first value Arrays.sort(v, (a, b)->a[ 0 ]-b[ 0 ]); // Function Call to modify the // second value of each pair modify_vec(v, n); int k = queries.length; // Traverse each queries for ( int i = 0 ; i < k; i++) { int m1 = queries[i][ 0 ]; int m2 = queries[i][ 1 ]; // Evaluate each query int result = evaluate_query(v, n, m1, m2); // Print the result if (result > 0 ) System.out.println( "Yes" ); else System.out.println( "No" ); } } // Driver function public static void main (String[] args) { int [][] arr = { { 3 , 5 }, { 2 , 7 }, { 2 , 3 }, { 4 , 9 } }; int [][] queries = { { 3 , 4 }, { 3 , 2 }, { 4 , 1 }, { 3 , 7 } }; // Function Call checkPairs(arr, queries); } } // This code is contributed by offbeat |
Python3
# Python3 program for the above approach # Function that performs binary search # to find value less than or equal to # first value of the pair def binary_search(vec, n, a): low, high, mid = 0 , 0 , 0 low = 0 high = n - 1 # Perform binary search while (low < high): # Find the mid mid = low + (high - low + 1 ) / / 2 # Update the high if (vec[mid][ 0 ] > a): high = mid - 1 # Else update low elif vec[mid][ 0 ] < = a: low = mid # Return the low index return low # Function to modify the second # value of each pair def modify_vec(v, n): # start from index 1 for i in range (n): v[i][ 1 ] = min (v[i][ 1 ], v[i - 1 ][ 1 ]) return v # Function to evaluate each query def evaluate_query(v, n, m1, m2): # Find value less than or equal to # the first value of pair temp = binary_search(v, n, m1) # check if we got the required # pair or not if ((v[temp][ 0 ] < = m1) and (v[temp][ 1 ] < = m2)): return 1 return 0 # Function to find a pair whose values is # less than the given pairs in query def checkPairs(v, queries): # Find the size of the vector n = len (v) # sort the vector based on # the first value v = sorted (v) # Function Call to modify the # second value of each pair v = modify_vec(v, n) k = len (queries) # Traverse each queries for i in range (k): m1 = queries[i][ 0 ] m2 = queries[i][ 1 ] # Evaluate each query result = evaluate_query(v, n, m1, m2) # Print the result if (result > 0 ): print ( "Yes" ) else : print ( "No" ) # Driver Code if __name__ = = '__main__' : arr = [ [ 3 , 5 ], [ 2 , 7 ], [ 2 , 3 ], [ 4 , 9 ] ] queries = [ [ 3 , 4 ], [ 3 , 2 ], [ 4 , 1 ], [ 3 , 7 ] ] # Function Call checkPairs(arr, queries) # This code is contributed by mohit kumar 29 |
C#
// C# program for above approach using System; using System.Collections.Generic; class GFG{ // Function that performs binary search // to find value less than or equal to // first value of the pair static int binary_search( int [][] vec, int n, int a) { int low, high, mid; low = 0; high = n - 1; // Perform binary search while (low < high) { // Find the mid mid = low + (high - low + 1) / 2; // Update the high if (vec[mid][0] > a) { high = mid - 1; } // Else update low else if (vec[mid][1] <= a) { low = mid; } } // Return the low index return low; } // Function to modify the second // value of each pair static void modify_vec( int [][] v, int n) { // start from index 1 for ( int i = 1; i < n; i++) { v[i][1] = Math.Min(v[i][1], v[i - 1][1]); } } // Function to evaluate each query static int evaluate_query( int [][] v, int n, int m1, int m2) { // Find value less than or equal to // the first value of pair int temp = binary_search(v, n, m1); // check if we got the required // pair or not if ((v[temp][0] <= m1) && (v[temp][1] <= m2)) { return 1; } return 0; } static int compare( int [] a, int [] b) { if (a[0] < b[0]) return -1; if (a[0] == b[0]) return 0; return 1; } // Function to find a pair whose values is // less than the given pairs in query static void checkPairs( int [][] v, int [][] queries) { // Find the size of the vector int n = v.Length; // sort the vector based on // the first value Array.Sort(v, compare); // Function Call to modify the // second value of each pair modify_vec(v, n); int k = queries.Length; // Traverse each queries for ( int i = 0; i < k; i++) { int m1 = queries[i][0]; int m2 = queries[i][1]; // Evaluate each query int result = evaluate_query(v, n, m1, m2); // Print the result if (result > 0) Console.WriteLine( "Yes" ); else Console.WriteLine( "No" ); } } // Driver function public static void Main ( string [] args) { int [][] arr = { new int [] { 3, 5 }, new int [] { 2, 7 }, new int [] { 2, 3 }, new int [] { 4, 9 } }; int [][] queries = { new int [] { 3, 4 }, new int [] { 3, 2 }, new int [] { 4, 1 }, new int [] { 3, 7 } }; // Function Call checkPairs(arr, queries); } } // This code is contributed by phasing17 |
Javascript
<script> // Javascript program for above approach // Function that performs binary search // to find value less than or equal to // first value of the pair function binary_search(vec,a,n) { let low, high, mid; low = 0; high = n - 1; // Perform binary search while (low < high) { // Find the mid mid = low + Math.floor((high - low + 1) / 2); // Update the high if (vec[mid][0] > a) { high = mid - 1; } // Else update low else if (vec[mid][1] <= a) { low = mid; } } // Return the low index return low; } // Function to modify the second // value of each pair function modify_vec(v,n) { // start from index 1 for (let i = 1; i < n; i++) { v[i][1] = Math.min(v[i][1], v[i - 1][1]); } } // Function to evaluate each query function evaluate_query(v,n,m1,m2) { // Find value less than or equal to // the first value of pair let temp = binary_search(v, n, m1); // check if we got the required // pair or not if ((v[temp][0] <= m1) && (v[temp][1] <= m2)) { return 1; } return 0; } // Function to find a pair whose values is // less than the given pairs in query function checkPairs(v, queries) { // Find the size of the vector let n = v.length; // sort the vector based on // the first value v.sort( function (a, b){ return a[0]-b[0]}); // Function Call to modify the // second value of each pair modify_vec(v, n); let k = queries.length; // Traverse each queries for (let i = 0; i < k; i++) { let m1 = queries[i][0]; let m2 = queries[i][1]; // Evaluate each query let result = evaluate_query(v, n, m1, m2); // Print the result if (result > 0) document.write( "Yes<br>" ); else document.write( "No<br>" ); } } // Driver function let arr=[[ 3, 5 ], [ 2, 7 ], [ 2, 3 ], [ 4, 9 ]]; let queries=[[ 3, 4 ], [ 3, 2 ], [ 4, 1 ], [ 3, 7 ]]; // Function Call checkPairs(arr, queries); // This code is contributed by unknown2108 </script> |
Yes No No Yes
Time Complexity: O(Q*log N)
Auxiliary Space: O(1)
Ready to dive in? Explore our Free Demo Content and join our DSA course, trusted by over 100,000 neveropen!