Tuesday, November 26, 2024
Google search engine
HomeData Modelling & AIQueries for the smallest and the largest prime number of given digit

Queries for the smallest and the largest prime number of given digit

Given Q queries where every query consists of an integer D, the task is to find the smallest and the largest prime number with D digits. If no such prime number exists then print -1.
Examples: 
 

Input: Q[] = {2, 5} 
Output: 
11 97 
10007 99991
Input: Q[] = {4, 3, 1} 
Output: 
1009 9973 
101 997 
1 7 
 

Approach: 
 

  1. D digit numbers start from 10(D – 1) and end at 10D – 1.
  2. Now, the task is to find the smallest and the largest prime number from this range.
  3. To answer a number of queries for prime numbers, Sieve of Eratosthenes can be used to answer whether a number is prime or not.

Below is the implementation of the above approach: 

C++




// C++ implementation of the approach
#include <bits/stdc++.h>
using namespace std;
 
#define MAX 100000
 
bool prime[MAX + 1];
 
void SieveOfEratosthenes()
{
 
    // Create a boolean array "prime[0..n]" and initialize
    // all entries it as true. A value in prime[i] will
    // finally be false if i is Not a prime, else true.
    memset(prime, true, sizeof(prime));
 
    for (int p = 2; p * p <= MAX; p++) {
 
        // If prime[p] is not changed, then it is a prime
        if (prime[p] == true) {
 
            // Update all multiples of p greater than or
            // equal to the square of it
            // numbers which are multiple of p and are
            // less than p^2 are already been marked.
            for (int i = p * p; i <= MAX; i += p)
                prime[i] = false;
        }
    }
}
 
// Function to return the smallest prime
// number with d digits
int smallestPrime(int d)
{
    int l = pow(10, d - 1);
    int r = pow(10, d) - 1;
    for (int i = l; i <= r; i++) {
 
        // check if prime
        if (prime[i]) {
            return i;
        }
    }
    return -1;
}
 
// Function to return the largest prime
// number with d digits
int largestPrime(int d)
{
    int l = pow(10, d - 1);
    int r = pow(10, d) - 1;
    for (int i = r; i >= l; i--) {
 
        // check if prime
        if (prime[i]) {
            return i;
        }
    }
    return -1;
}
 
// Driver code
int main()
{
    SieveOfEratosthenes();
 
    int queries[] = { 2, 5 };
    int q = sizeof(queries) / sizeof(queries[0]);
 
    // Perform queries
    for (int i = 0; i < q; i++) {
        cout << smallestPrime(queries[i]) << " "
             << largestPrime(queries[i]) << endl;
    }
 
    return 0;
}


Java




// Java implementation of the approach
import java.util.*;
 
class GFG
{
static int MAX = 100000;
 
static boolean []prime = new boolean[MAX + 1];
 
static void SieveOfEratosthenes()
{
 
    // Create a boolean array "prime[0..n]" and
    // initialize all entries it as true.
    // A value in prime[i] will finally be false
    // if i is Not a prime, else true.
    for (int i = 0; i < MAX + 1; i++)
    {
        prime[i] = true;
    }
    for (int p = 2; p * p <= MAX; p++)
    {
 
        // If prime[p] is not changed,
        // then it is a prime
        if (prime[p] == true)
        {
 
            // Update all multiples of p greater than or
            // equal to the square of it
            // numbers which are multiple of p and are
            // less than p^2 are already been marked.
            for (int i = p * p; i <= MAX; i += p)
                prime[i] = false;
        }
    }
}
 
// Function to return the smallest prime
// number with d digits
static int smallestPrime(int d)
{
    int l = (int) Math.pow(10, d - 1);
    int r = (int) Math.pow(10, d) - 1;
    for (int i = l; i <= r; i++)
    {
 
        // check if prime
        if (prime[i])
        {
            return i;
        }
    }
    return -1;
}
 
// Function to return the largest prime
// number with d digits
static int largestPrime(int d)
{
    int l = (int) Math.pow(10, d - 1);
    int r = (int) Math.pow(10, d) - 1;
    for (int i = r; i >= l; i--)
    {
 
        // check if prime
        if (prime[i])
        {
            return i;
        }
    }
    return -1;
}
 
// Driver code
public static void main(String[] args)
{
    SieveOfEratosthenes();
 
    int queries[] = { 2, 5 };
    int q = queries.length;
 
    // Perform queries
    for (int i = 0; i < q; i++)
    {
        System.out.println(smallestPrime(queries[i]) + " " +
                           largestPrime(queries[i]));
    }
}
}
 
// This code is contributed by Rajput-Ji


Python3




# Python3 implementation of the approach
from math import sqrt
 
MAX = 100000
 
# Create a boolean array "prime[0..n]" and
# initialize all entries it as true.
# A value in prime[i] will finally be false
# if i is Not a prime, else true.
prime = [True] * (MAX + 1)
 
def SieveOfEratosthenes() :
 
    for p in range(2, int(sqrt(MAX)) + 1) :
 
        # If prime[p] is not changed,
        # then it is a prime
        if (prime[p] == True) :
 
            # Update all multiples of p greater than or
            # equal to the square of it
            # numbers which are multiple of p and are
            # less than p^2 are already been marked.
            for i in range(p * p, MAX + 1, p) :
                prime[i] = False;
 
# Function to return the smallest prime
# number with d digits
def smallestPrime(d) :
 
    l = 10 ** (d - 1);
    r = (10 ** d) - 1;
    for i in range(l, r + 1) :
 
        # check if prime
        if (prime[i]) :
            return i;
 
    return -1;
 
# Function to return the largest prime
# number with d digits
def largestPrime(d) :
 
    l = 10 ** (d - 1);
    r = (10 ** d) - 1;
    for i in range(r, l , -1) :
 
        # check if prime
        if (prime[i]) :
            return i;
             
    return -1;
 
# Driver code
if __name__ == "__main__" :
 
    SieveOfEratosthenes();
 
    queries = [ 2, 5 ];
    q = len(queries);
 
    # Perform queries
    for i in range(q) :
        print(smallestPrime(queries[i]), " ",
              largestPrime(queries[i]));
 
# This code is contributed by AnkitRai01


C#




// C# implementation of the approach
using System;
     
class GFG
{
static int MAX = 100000;
 
static bool []prime = new bool[MAX + 1];
 
static void SieveOfEratosthenes()
{
 
    // Create a boolean array "prime[0..n]" and
    // initialize all entries it as true.
    // A value in prime[i] will finally be false
    // if i is Not a prime, else true.
    for (int i = 0; i < MAX + 1; i++)
    {
        prime[i] = true;
    }
    for (int p = 2; p * p <= MAX; p++)
    {
 
        // If prime[p] is not changed,
        // then it is a prime
        if (prime[p] == true)
        {
 
            // Update all multiples of p greater than
            // or equal to the square of it
            // numbers which are multiple of p and are
            // less than p^2 are already been marked.
            for (int i = p * p; i <= MAX; i += p)
                prime[i] = false;
        }
    }
}
 
// Function to return the smallest prime
// number with d digits
static int smallestPrime(int d)
{
    int l = (int) Math.Pow(10, d - 1);
    int r = (int) Math.Pow(10, d) - 1;
    for (int i = l; i <= r; i++)
    {
 
        // check if prime
        if (prime[i])
        {
            return i;
        }
    }
    return -1;
}
 
// Function to return the largest prime
// number with d digits
static int largestPrime(int d)
{
    int l = (int) Math.Pow(10, d - 1);
    int r = (int) Math.Pow(10, d) - 1;
    for (int i = r; i >= l; i--)
    {
 
        // check if prime
        if (prime[i])
        {
            return i;
        }
    }
    return -1;
}
 
// Driver code
public static void Main(String[] args)
{
    SieveOfEratosthenes();
 
    int []queries = { 2, 5 };
    int q = queries.Length;
 
    // Perform queries
    for (int i = 0; i < q; i++)
    {
        Console.WriteLine(smallestPrime(queries[i]) + " " +
                           largestPrime(queries[i]));
    }
}
}
 
// This code is contributed by 29AjayKumar


Javascript




<script>
 
// Javascript implementation of the approach
 
const MAX = 100000;
 
// Create a boolean array
// "prime[0..n]" and initialize
// all entries it as true.
// A value in prime[i] will
// finally be false if i is Not a prime,
// else true.
let prime = new Array(MAX + 1).fill(true);
 
function SieveOfEratosthenes()
{
 
    for (let p = 2; p * p <= MAX; p++)
    {
 
        // If prime[p] is not changed,
        // then it is a prime
        if (prime[p] == true) {
 
            // Update all multiples of p
            // greater than or
            // equal to the square of it
            // numbers which are multiple
            // of p and are
            // less than p^2 are already
            // been marked.
            for (let i = p * p; i <= MAX; i += p)
                prime[i] = false;
        }
    }
}
 
// Function to return the smallest prime
// number with d digits
function smallestPrime(d)
{
    let l = Math.pow(10, d - 1);
    let r = Math.pow(10, d) - 1;
    for (let i = l; i <= r; i++) {
 
        // check if prime
        if (prime[i]) {
            return i;
        }
    }
    return -1;
}
 
// Function to return the largest prime
// number with d digits
function largestPrime(d)
{
    let l = Math.pow(10, d - 1);
    let r = Math.pow(10, d) - 1;
    for (let i = r; i >= l; i--) {
 
        // check if prime
        if (prime[i]) {
            return i;
        }
    }
    return -1;
}
 
// Driver code
    SieveOfEratosthenes();
 
    let queries = [ 2, 5 ];
    let q = queries.length;
 
    // Perform queries
    for (let i = 0; i < q; i++) {
        document.write(smallestPrime(queries[i]) + " "
             + largestPrime(queries[i]) + "<br>");
    }
 
</script>


Output: 

11 97
10007 99991

 

Time Complexity: O(MAX*log(log(MAX)) + q*(r – l))

Auxiliary Space: O(MAX)

Feeling lost in the world of random DSA topics, wasting time without progress? It’s time for a change! Join our DSA course, where we’ll guide you on an exciting journey to master DSA efficiently and on schedule.
Ready to dive in? Explore our Free Demo Content and join our DSA course, trusted by over 100,000 neveropen!

RELATED ARTICLES

Most Popular

Recent Comments