Saturday, November 16, 2024
Google search engine
HomeData Modelling & AIPythagorean Triplet with given sum using single loop

Pythagorean Triplet with given sum using single loop

A Pythagorean Triplet is a set of natural numbers such that a < b < c, for which 

a^2 + b^2 = c^2

Given a number N, find a Pythagorean Triplet with sum as given N or return -1.

Examples:

Input: 12  
Output: 3 4 5
Explanation:
As 32 + 42 = 52

Input: 82
Output: -1

Approach: The idea is to find the value of b and c in terms of a and iterate a from 1 to N. To find the value of b and c in terms of a we have to do following:

We have two equations,

a^2 + b^2 = c^2
a + b + c = N

We will find the value of c in term of a and b Then put this value in equation 1 to solve for b. 

From equation 2, 

c = N - b - a

Now, put this value in equation 1.

a^2 + b^2 = (N - b - a)^2

After solving the above equation we will get, 

b = (N * N - 2 * N * a) / (2 * N - 2 * a)
c = N - b - a

Now, iterate a from 1 to N and calculate respectively the value of b and c Then, check if

a^2 + b^2 = c^2

C++




// C++ program to find the Pythagorean
// Triplet with given sum
#include <bits/stdc++.h>
using namespace std;
 
// Function to calculate the
// Pythagorean triplet in O(n)
void PythagoreanTriplet(int n)
{
    int flag = 0;
 
    // Iterate a from 1 to N-1.
    for (int a = 1; a < n; a++)
    {
        // Calculate value of b
        int b = (n * n - 2 * n * a)
                / (2 * n - 2 * a);
 
        // The value of c = n - a - b
        int c = n - a - b;
 
        if (a * a + b * b == c * c
            && b > 0 && c > 0)
        {
            cout << a << " " << b << " " << c;
            flag = 1;
            break;
        }
    }
 
    if (flag == 0) {
        cout << "-1";
    }
 
    return;
}
 
// Driver Code
int main()
{
    int N = 12;
 
    // Function call
    PythagoreanTriplet(N);
 
    return 0;
}


Java




// Java program to find the Pythagorean
// Triplet with given sum
 
class GFG {
 
    // Function to calculate the
    // Pythagorean triplet in O(n)
    static void PythagoreanTriplet(int n)
    {
        int flag = 0;
 
        // Iterate a from 1 to N-1.
        for (int a = 1; a < n; a++)
        {
            // Calculate value of b
            int b = (n * n - 2 * n * a)
              / (2 * n - 2 * a);
 
            // The value of c = n - a - b
            int c = n - a - b;
 
            if (a * a + b * b == c * c
                && b > 0 && c > 0)
            {
                System.out
                  .print(a + " " + b + " " + c);
                flag = 1;
                break;
            }
        }
 
        if (flag == 0)
        {
            System.out.print("-1");
        }
 
        return;
    }
   
    // Driver Code
    public static void main(String[] args)
    {
        int N = 12;
 
        // Function call
        PythagoreanTriplet(N);
    }
}
 
// This code contributed by sapnasingh4991


Python3




# Python3 program to find the Pythagorean
# Triplet with a given sum
 
# Function to calculate the
# Pythagorean triplet in O(n)
 
 
def PythagoreanTriplet(n):
    flag = 0
 
    # Iterate a from 1 to N-1.
    for a in range(1, n, 1):
 
        # Calculate value of b
        b = (n * n - 2 * n * a) // (2 * n - 2 * a)
 
        # The value of c = n - a - b
        c = n - a - b
 
        if (a * a + b * b == c * c
            and b > 0 and c > 0):
            print(a, b, c)
            flag = 1
            break
 
    if(flag == 0):
        print("-1")
 
    return
 
 
# Driver code
if __name__ == '__main__':
    N = 12
 
    # Function call
    PythagoreanTriplet(N)
 
# This code is contributed by Bhupendra_Singh


C#




// C# program to find the Pythagorean
// Triplet with given sum
using System;
 
class GFG {
 
    // Function to calculate the
    // Pythagorean triplet in O(n)
    static void PythagoreanTriplet(int n)
    {
        int flag = 0;
 
        // Iterate a from 1 to N-1.
        for (int a = 1; a < n; a++)
        {
            // Calculate value of b
            int b = (n * n - 2 * n * a)
              / (2 * n - 2 * a);
 
            // The value of c = n - a - b
            int c = n - a - b;
            if (a * a + b * b == c * c
                && b > 0 && c > 0)
            {
                Console.Write(a + " " + b + " " + c);
                flag = 1;
                break;
            }
        }
 
        if (flag == 0) {
            Console.Write("-1");
        }
        return;
    }
 
    // Driver code
    public static void Main(String[] args)
    {
        int N = 12;
 
        // Function call
        PythagoreanTriplet(N);
    }
}
 
// This code is contributed by shivanisinghss2110


Javascript




<script>
    // Javascript program to find the Pythagorean
      // Triplet with given sum
     
    // Function to calculate the
    // Pythagorean triplet in O(n)
    function PythagoreanTriplet(n)
    {
        let flag = 0;
 
        // Iterate a from 1 to N-1.
        for (let a = 1; a < n; a++)
        {
            // Calculate value of b
            let b = (n * n - 2 * n * a)
                    / (2 * n - 2 * a);
 
            // The value of c = n - a - b
            let c = n - a - b;
 
            if (a * a + b * b == c * c
                && b > 0 && c > 0)
            {
                document.write(a + " " + b + " " + c);
                flag = 1;
                break;
            }
        }
 
        if (flag == 0) {
            document.write("-1");
        }
 
        return;
    }
     
    let N = 12;
  
    // Function call
    PythagoreanTriplet(N);
 
// This code is contributed by divyeshrabadiya
</script>


Output

3 4 5

Time Complexity: O(N)
Auxiliary Space: O(1)

Feeling lost in the world of random DSA topics, wasting time without progress? It’s time for a change! Join our DSA course, where we’ll guide you on an exciting journey to master DSA efficiently and on schedule.
Ready to dive in? Explore our Free Demo Content and join our DSA course, trusted by over 100,000 neveropen!

RELATED ARTICLES

Most Popular

Recent Comments