Wednesday, November 20, 2024
Google search engine
HomeData Modelling & AIProgram to find the value of P(N + r) for a polynomial...

Program to find the value of P(N + r) for a polynomial of a degree N such that P(i) = 1 for 1 ≤ i ≤ N and P(N + 1) = a

Given three positive integers N, R, and A and a polynomial P(X) of degree N, P(i) = 1 for 1 ? i ? N and the value of P(N + 1) is A, the task is to find the value of the P(N + R).

Examples:

Input: N = 1, R = 3, A = 2
Output: 4
Explanation:
The equation of the given polynomial is P(x) = x. Therefore, the value of P(N + R) = P(4) = 4.

Input: N = 2, R = 3, A = 1
Output: 1

Approach: The given problem can be solved by finding the expression of the given polynomial P(X) and then calculate the value of P(N + R). The general form of a polynomial with degree N is:

P(x) = k * (x – x1) * (x – x2) * (x – x3) * … *(x – xn) + c
where x1, x2, x3, …, xn are the roots P(x) where k and c are arbitrary constants.

Consider F(x) be another polynomial of degree N such that
F(x) = P(x) + c — (1)

Now, if c = -1, F(x) = 0 since P(x) = 1 for x ? [1, N].
? F(x) has N roots which are equal to 1, 2, 3, …, N.
Therefore, F(x) = k * (x – 1) * (x – 2) * … * (x – N), for all c = -1.

Rearranging terms in equation (1),  
P(x) = F(x) – c 
P(x) = k * (x – 1) * (x – 2) * … *(x – N) + 1 — (2)

Putting x = N + 1 in equation (2),  
k = (a – 1) / N!

Therefore, P(x) = ((a – 1)/N!) * (x – 1) * (x – 2) * … *(x – N) + 1 — (3)

Therefore, the idea is to substitute the value of (N + R) in equation (3) and print the value of the expression as the result. Follow the steps below to solve the problem:

  • Initialize a variable, say ans, as the value of (A – 1) / N!.
  • Iterate over the range [1, N] using the variable i and update the value of ans as ans * (N + R – i).
  • After completing the above steps, print the value of (ans + 1) as the result.

Below is the implementation of the above approach:

C++




// C++ program for the above approach
#include <bits/stdc++.h>
using namespace std;
 
// Function to calculate
// factorial of N
int fact(int n)
{
     
    // Base Case
    if (n == 1 || n == 0)
        return 1;
         
    // Otherwise, recursively
    // calculate the factorial
    else
        return n * fact(n - 1);
}
 
// Function to find the value of
// P(n + r) for polynomial P(X)
int findValue(int n, int r, int a)
{
     
    // Stores the value of k
    int k = (a - 1) / fact(n);
 
    // Store the required answer
    int answer = k;
 
    // Iterate in the range [1, N] and
    // multiply (n + r - i) with answer
    for(int i = 1; i < n + 1; i++)
        answer = answer * (n + r - i);
         
    // Add the constant value C as 1
    answer = answer + 1;
 
    // Return the result
    return answer;
}
 
// Driver Code
int main()
{
    int N = 1;
    int A = 2;
    int R = 3;
     
    cout << (findValue(N, R, A));
     
    return 0;
}
 
// This code is contributed by mohit kumar 29


Java




// Java program for the above approach
import java.util.*;
class GFG{
   
// Function to calculate
// factorial of N
static int fact(int n)
{
     
    // Base Case
    if (n == 1 || n == 0)
        return 1;
         
    // Otherwise, recursively
    // calculate the factorial
    else
        return n * fact(n - 1);
}
 
// Function to find the value of
// P(n + r) for polynomial P(X)
static int findValue(int n, int r, int a)
{
     
    // Stores the value of k
    int k = (a - 1) / fact(n);
 
    // Store the required answer
    int answer = k;
 
    // Iterate in the range [1, N] and
    // multiply (n + r - i) with answer
    for(int i = 1; i < n + 1; i++)
        answer = answer * (n + r - i);
         
    // Add the constant value C as 1
    answer = answer + 1;
 
    // Return the result
    return answer;
}
 
// Driver Code
public static void main(String args[])
{
    int N = 1;
    int A = 2;
    int R = 3;
    System.out.print(findValue(N, R, A));
}
 
}
 
// This code is contributed by SURENDRA_GANGWAR.


Python3




# Python program for the above approach
 
# Function to calculate
# factorial of N
def fact(n):
   
    # Base Case
    if n == 1 or n == 0:
        return 1
       
    # Otherwise, recursively
    # calculate the factorial
    else:
        return n * fact(n-1)
 
# Function to find the value of
# P(n + r) for polynomial P(X)
def findValue(n, r, a):
 
    # Stores the value of k
    k = (a-1) // fact(n)
 
    # Store the required answer
    answer = k
 
    # Iterate in the range [1, N] and
    # multiply (n + r - i) with answer
    for i in range(1, n + 1):
        answer = answer*(n + r-i)
 
    # Add the constant value C as 1
    answer = answer + 1
 
    # Return the result
    return answer
 
 
# Driver Code
 
N = 1
A = 2
R = 3
 
print(findValue(N, R, A))


C#




// C# program for the above approach
using System;
 
class GFG{
 
// Function to calculate
// factorial of N
static int fact(int n)
{
     
    // Base Case
    if (n == 1 || n == 0)
        return 1;
         
    // Otherwise, recursively
    // calculate the factorial
    else
        return n * fact(n - 1);
}
 
// Function to find the value of
// P(n + r) for polynomial P(X)
static int findValue(int n, int r, int a)
{
     
    // Stores the value of k
    int k = (a - 1) / fact(n);
 
    // Store the required answer
    int answer = k;
 
    // Iterate in the range [1, N] and
    // multiply (n + r - i) with answer
    for(int i = 1; i < n + 1; i++)
        answer = answer * (n + r - i);
         
    // Add the constant value C as 1
    answer = answer + 1;
 
    // Return the result
    return answer;
}
 
// Driver Code
static public void Main()
{
    int N = 1;
    int A = 2;
    int R = 3;
     
    Console.Write((findValue(N, R, A)));
}
}
 
// This code is contributed by code_hunt


Javascript




<script>
 
// JavaScript program to implement
// the above approach
 
// Function to calculate
// factorial of N
function fact(n)
{
      
    // Base Case
    if (n == 1 || n == 0)
        return 1;
          
    // Otherwise, recursively
    // calculate the factorial
    else
        return n * fact(n - 1);
}
  
// Function to find the value of
// P(n + r) for polynomial P(X)
function findValue(n, r, a)
{
      
    // Stores the value of k
    let k = (a - 1) / fact(n);
  
    // Store the required answer
    let answer = k;
  
    // Iterate in the range [1, N] and
    // multiply (n + r - i) with answer
    for(let i = 1; i < n + 1; i++)
        answer = answer * (n + r - i);
          
    // Add the constant value C as 1
    answer = answer + 1;
  
    // Return the result
    return answer;
}
 
// Driver code
    let N = 1;
    let A = 2;
    let R = 3;
    document.write(findValue(N, R, A));
  
 // This code is contributed by code_hunt.
</script>


Output: 

4

 

Time Complexity: O(N)
Auxiliary Space: O(1)

Feeling lost in the world of random DSA topics, wasting time without progress? It’s time for a change! Join our DSA course, where we’ll guide you on an exciting journey to master DSA efficiently and on schedule.
Ready to dive in? Explore our Free Demo Content and join our DSA course, trusted by over 100,000 neveropen!

RELATED ARTICLES

Most Popular

Recent Comments