Monday, November 18, 2024
Google search engine
HomeData Modelling & AIProgram to find smallest difference of angles of two parts of a...

Program to find smallest difference of angles of two parts of a given circle

Given a division of a circle into n pieces as an array of size n. The ith element of the array denotes the angle of one piece. Our task is to make two continuous parts from these pieces so that the difference between angles of these two parts is minimum.
Examples : 
 

Input : arr[] = {90, 90, 90, 90}
Output : 0
In this example, we can take 1 and 2 
pieces and 3 and 4 pieces. Then the 
answer is |(90 + 90) - (90 + 90)| = 0.

Input : arr[] = {170, 30, 150, 10}
Output : 0
In this example, we can take 1 and 4, 
and 2 and 3 pieces. So the answer is 
|(170 + 10) - (30 + 150)| = 0.

Input : arr[] = {100, 100, 160}
Output : 40

 

We can notice that if one of the parts is continuous then all the remaining pieces also form a continuous part. If angle of the first part is equal to x then difference between angles of first and second parts is |x – (360 – x)| = |2 * x – 360| = 2 * |x – 180|. So for each possible continuous part, we can count its angle and update the answer. 
 

C++




// CPP program to find minimum 
// difference of angles of two 
// parts of given circle.
#include <bits/stdc++.h>
using namespace std;
  
// Returns the minimum difference
// of angles.
int findMinimumAngle(int arr[], int n)
{
    int l = 0, sum = 0, ans = 360;
    for (int i = 0; i < n; i++) {
        // sum of array
        sum += arr[i];
  
        while (sum >= 180) {
  
            // calculating the difference of 
            // angles and take minimum of 
            // previous and newly calculated
            ans = min(ans, 2 * abs(180 - sum));
            sum -= arr[l];
            l++;
        }
  
        ans = min(ans, 2 * abs(180 - sum));
    }
    return ans;
}
  
// driver code
int main()
{
    int arr[] = { 100, 100, 160 };
    int n = sizeof(arr) / sizeof(arr[0]);
    cout << findMinimumAngle(arr, n) << endl;
    return 0;
}
  
// This code is contributed by "Abhishek Sharma 44"


Java




// java program to find minimum 
// difference of angles of two 
// parts of given circle.
import java.util.*;
  
class Count{
    public static int findMinimumAngle(int arr[], int n)
    {
        int l = 0, sum = 0, ans = 360;
        for (int i = 0; i < n; i++)
        {
            // sum of array
            sum += arr[i];
      
            while (sum >= 180
            {
      
                // calculating the difference of 
                // angles and take minimum of 
                // previous and newly calculated
                ans = Math.min(ans,
                            2 * Math.abs(180 - sum));
                sum -= arr[l];
                l++;
            }
      
            ans = Math.min(ans,
                            2 * Math.abs(180 - sum));
        }
          
        return ans;
          
    }
      
    public static void main(String[] args)
    {
        int arr[] = { 100, 100, 160 };
        int n = 3;
        System.out.print(findMinimumAngle(arr, n));
    }
}
  
// This code is contributed by rishabh_jain


Python3




#Python3 program to find minimum 
# difference of angles of two 
# parts of given circle.
import math
  
# function returns the minimum 
# difference of angles.
def findMinimumAngle (arr, n):
    l = 0
    _sum = 0
    ans = 360
    for i in range(n):
          
        #sum of array
        _sum += arr[i]
          
        while _sum >= 180:
          
            # calculating the difference of
            # angles and take minimum of 
            # previous and newly calculated
            ans = min(ans, 2 * abs(180 - _sum))
            _sum -= arr[l]
            l+=1
        ans = min(ans, 2 * abs(180 - _sum))
    return ans
      
# driver code
arr = [100, 100, 160]
n = len(arr)
print(findMinimumAngle (arr, n))
  
# This code is contributed by "Abhishek Sharma 44"


C#




// C# program to find minimum 
// difference of angles of two 
// parts of given circle.
using System;
  
class GFG
{
    public static int findMinimumAngle(int []arr, int n)
    {
        int l = 0, sum = 0, ans = 360;
        for (int i = 0; i < n; i++)
        {
            // sum of array
            sum += arr[i];
      
            while (sum >= 180) 
            {
      
                // calculating the difference of 
                // angles and take minimum of 
                // previous and newly calculated
                ans = Math.Min(ans,
                      2 * Math.Abs(180 - sum));
                sum -= arr[l];
                l++;
            }
      
            ans = Math.Min(ans,
                        2 * Math.Abs(180 - sum));
        }
          
        return ans;
          
    }
      
    // Driver code
    public static void Main()
    {
        int []arr = { 100, 100, 160 };
        int n = 3;
        Console.WriteLine(findMinimumAngle(arr, n));
    }
}
  
// This code is contributed by vt_m


PHP




<?php
// PHP program to find minimum 
// difference of angles of two 
// parts of given circle.
  
// Returns the minimum difference
// of angles.
function findMinimumAngle($arr, $n)
{
    $l = 0; $sum = 0; $ans = 360;
    for ($i = 0; $i < $n; $i++) 
    {
        // sum of array
        $sum += $arr[$i];
  
        while ($sum >= 180) 
        {
  
            // calculating the difference of 
            // angles and take minimum of 
            // previous and newly calculated
            $ans = min($ans, 2 * 
                             abs(180 - $sum));
            $sum -= $arr[$l];
            $l++;
        }
  
        $ans = min($ans, 2 * abs(180 - $sum));
    }
    return $ans;
}
  
// Driver Code
$arr = array( 100, 100, 160 );
$n = sizeof($arr);
echo findMinimumAngle($arr, $n), "\n" ;
  
// This code is contributed by m_kit
?>


Javascript




<script>
// javascript program to find minimum 
// difference of angles of two 
// parts of given circle.
   
let MAXN = 109;
    
    function findMinimumAngle(arr, n)
    {
        let l = 0, sum = 0, ans = 360;
        for (let i = 0; i < n; i++)
        {
            // sum of array
            sum += arr[i];
        
            while (sum >= 180) 
            {
        
                // calculating the difference of 
                // angles and take minimum of 
                // previous and newly calculated
                ans = Math.min(ans,
                            2 * Math.abs(180 - sum));
                sum -= arr[l];
                l++;
            }
        
            ans = Math.min(ans,
                            2 * Math.abs(180 - sum));
        }
            
        return ans;
            
    }
      
// Driver code
  
        let arr = [ 100, 100, 160 ];
        let n = 3;
        document.write(findMinimumAngle(arr, n));
  
</script>


Output : 
 

40

Time Complexity: O(n) 
Auxiliary Space: O(1)

Please suggest if someone has a better solution which is more efficient in terms of space and time.
Please write comments if you find anything incorrect, or you want to share more information about the topic discussed above
 

Feeling lost in the world of random DSA topics, wasting time without progress? It’s time for a change! Join our DSA course, where we’ll guide you on an exciting journey to master DSA efficiently and on schedule.
Ready to dive in? Explore our Free Demo Content and join our DSA course, trusted by over 100,000 neveropen!

RELATED ARTICLES

Most Popular

Recent Comments