Wednesday, November 20, 2024
Google search engine
HomeData Modelling & AIProgram to find Length of Latus Rectum of an Ellipse

Program to find Length of Latus Rectum of an Ellipse

Given two integers A and B, representing the length of semi-major and semi-minor axis of an Ellipse with general equation (x2 / A2) + (y2 / B2) = 1, the task is to find the length of the latus rectum of the ellipse

Examples:

Input: A = 3, B = 2
Output: 2.66666

Input: A = 6, B = 3
Output: 3

Approach: The given problem can be solved based on the following observations: 

  • The Latus Rectum of an Ellipse is the focal chord perpendicular to the major axis whose length is equal to:
     \frac{(length\ of\  minor\ axis)^2}{(length\ of\ major\ axis)}

Ellipse

  • Length of major axis is 2A.
  • Length of minor axis is 2B.
  • Therefore, the length of the latus rectum is:
     d_{LL'}=2\frac{B^2}{A}

Follow the steps below to solve the given problem:

  • Initialize two variables, say major and minor, to store the length of the major-axis (= 2A) and the length of the minor-axis (= 2B) of the Ellipse respectively.
  • Calculate the square of minor and divide it with major. Store the result in a double variable, say latus_rectum.
  • Print the value of latus_rectum as the final result. 

Below is the implementation of the above approach:

C++




// C++ program for the above approach
#include <iostream>
using namespace std;
 
// Function to calculate the length
// of the latus rectum of an ellipse
double lengthOfLatusRectum(double A,
                           double B)
{
    // Length of major axis
    double major = 2.0 * A;
   
    // Length of minor axis
    double minor = 2.0 * B;
   
    // Length of the latus rectum
    double latus_rectum = (minor*minor)/major;
   
    return latus_rectum;
}
 
// Driver Code
int main()
{
    // Given lengths of semi-major
  // and semi-minor axis
    double A = 3.0, B = 2.0;
   
    // Function call to calculate length
    // of the latus rectum of a ellipse
    cout << lengthOfLatusRectum(A, B);
    return 0;
}


Java




// Java program for the above approach
import java.util.*;
 
class GFG{
 
// Function to calculate the length
// of the latus rectum of an ellipse
static double lengthOfLatusRectum(double A,
                                  double B)
{
     
    // Length of major axis
    double major = 2.0 * A;
     
    // Length of minor axis
    double minor = 2.0 * B;
     
    // Length of the latus rectum
    double latus_rectum = (minor * minor) / major;
     
    return latus_rectum;
}
 
// Driver code
public static void main(String[] args)
{
     
    // Given lengths of semi-major
    // and semi-minor axis
    double A = 3.0, B = 2.0;
 
    // Function call to calculate length
    // of the latus rectum of a ellipse
    System.out.print(lengthOfLatusRectum(A, B));
}
}
 
// This code is contributed by susmitakundugoaldanga


Python3




# Python3 program for the above approach
 
# Function to calculate the length
# of the latus rectum of an ellipse
def lengthOfLatusRectum(A, B):
   
    # Length of major axis
    major = 2.0 * A
 
    # Length of minor axis
    minor = 2.0 * B
 
    # Length of the latus rectum
    latus_rectum = (minor*minor)/major
    return latus_rectum
 
# Driver Code
if __name__ == "__main__":
 
    # Given lengths of semi-major
        # and semi-minor axis
    A = 3.0
    B = 2.0
 
    # Function call to calculate length
    # of the latus rectum of a ellipse
    print('%.5f' % lengthOfLatusRectum(A, B))
 
    # This code is contributed by ukasp.


C#




// C# program for the above approach
using System;
 
class GFG
{
 
  // Function to calculate the length
  // of the latus rectum of an ellipse
  static double lengthOfLatusRectum(double A,
                                    double B)
  {
    // Length of major axis
    double major = 2.0 * A;
 
    // Length of minor axis
    double minor = 2.0 * B;
 
    // Length of the latus rectum
    double latus_rectum = (minor*minor)/major;
 
    return latus_rectum;
  }
 
  // Driver Code
  public static void Main()
  {
 
    // Given lengths of semi-major
    // and semi-minor axis
    double A = 3.0, B = 2.0;
 
    // Function call to calculate length
    // of the latus rectum of a ellipse
    Console.WriteLine(lengthOfLatusRectum(A, B));
  }
}
 
// This code is contributed by souravghosh0416.


Javascript




<script>
 
// Javascript program for the above approach
 
// Function to calculate the length
// of the latus rectum of an ellipse
function lengthOfLatusRectum(A, B)
{
     
    // Length of major axis
    var major = 2.0 * A;
     
    // Length of minor axis
    var minor = 2.0 * B;
     
    // Length of the latus rectum
    var latus_rectum = (minor * minor) / major;
     
    return latus_rectum;
}
 
// Driver code
 
// Given lengths of semi-major
// and semi-minor axis
var A = 3.0, B = 2.0;
 
document.write(lengthOfLatusRectum(A, B));
 
// This code is contributed by Ankita saini
    
</script>


Output

2.66667



Time Complexity: O(1)
Auxiliary Space: O(1) 

Using the formula :

Approach:

The length of the Latus Rectum of an Ellipse can be calculated using the formula: L = 2b^2/a, where a and b are the lengths of the major and minor axis of the ellipse, respectively.

Define a function latus_rectum that takes two arguments a and b.
Inside the function, calculate the length of the Latus Rectum using the formula 2 * b ** 2 / a and return the result.
Call the function twice with different values of a and b.
Print the results using formatted strings to display the inputs and outputs with appropriate decimal places.

C++




#include <iostream>
#include <iomanip> // For setting the precision of the output
 
// Function to calculate the length of Latus Rectum
double latusRectum(double a, double b) {
    return (2 * b * b) / a;
}
 
int main() {
    // Example inputs
    double a1 = 3, b1 = 2;
    double a2 = 6, b2 = 3;
 
    // Calculate the length of Latus Rectum for the first ellipse
    double l1 = latusRectum(a1, b1);
 
    // Display the result with formatted string
    std::cout << "The length of the Latus Rectum of the ellipse with a = "
         << a1 << " and b = " << b1
              << " is " << std::fixed << std::setprecision(5) << l1 << std::endl;
 
    // Calculate the length of Latus Rectum for the second ellipse
    double l2 = latusRectum(a2, b2);
 
    // Display the result with formatted string
    std::cout << "The length of the Latus Rectum of the ellipse with a = "
              << a2 << " and b = " << b2
              << " is " << std::fixed << std::setprecision(5) << l2 << std::endl;
 
    return 0;
}


Java




public class Main {
    // Function to calculate the length of Latus Rectum
    static double latusRectum(double a, double b) {
        return (2 * b * b) / a;
    }
 
    public static void main(String[] args) {
        // Example inputs
        double a1 = 3, b1 = 2;
        double a2 = 6, b2 = 3;
 
        // Calculate the length of Latus Rectum for the first ellipse
        double l1 = latusRectum(a1, b1);
 
        // Display the result with formatted string
        System.out.println("The length of the Latus Rectum of the ellipse with a = " + a1 +
                " and b = " + b1 + " is " + String.format("%.5f", l1));
 
        // Calculate the length of Latus Rectum for the second ellipse
        double l2 = latusRectum(a2, b2);
 
        // Display the result with formatted string
        System.out.println("The length of the Latus Rectum of the ellipse with a = " + a2 +
                " and b = " + b2 + " is " + String.format("%.5f", l2));
    }
}
 
// This code is contributed by shivamgupta0987654321


Python3




def latus_rectum(a, b):
    return 2 * b ** 2 / a
 
# Example inputs
a1, b1 = 3, 2
a2, b2 = 6, 3
 
# Calculate the length of Latus Rectum for the first ellipse
l1 = latus_rectum(a1, b1)
 
# Display the result with formatted string
print(f"The length of the Latus Rectum of the ellipse with a = {a1} and b = {b1} is {l1:.5f}")
 
# Calculate the length of Latus Rectum for the second ellipse
l2 = latus_rectum(a2, b2)
 
# Display the result with formatted string
print(f"The length of the Latus Rectum of the ellipse with a = {a2} and b = {b2} is {l2:.5f}")


Output

The length of the Latus Rectum of the ellipse with a = 3 and b = 2 is 2.66667
The length of the Latus Rectum of the ellipse with a = 6 and b = 3 is 3.00000



Time complexity: O(1)
Auxiliary Space: O(1)

Feeling lost in the world of random DSA topics, wasting time without progress? It’s time for a change! Join our DSA course, where we’ll guide you on an exciting journey to master DSA efficiently and on schedule.
Ready to dive in? Explore our Free Demo Content and join our DSA course, trusted by over 100,000 neveropen!

RELATED ARTICLES

Most Popular

Recent Comments