Tuesday, November 26, 2024
Google search engine
HomeData Modelling & AIProgram to find height of a Trapezoid

Program to find height of a Trapezoid

Given two integers a and b representing the length of the two bases, and the two integers p1 and p2 representing the non-parallel sides of a trapezoid, the task is to find the height of the trapezoid.

A Trapezoid is a convex quadrilateral with at least one pair of parallel sides. The parallel sides are called the bases of the trapezoid and the other two sides which are not parallel are referred to as the legs. There can also be a pair of bases. 
In the figure, CD || AB. Therefore, they form the bases, and the other two sides i.e., AD and BC form the legs.

Examples:

Input: a = 14, b = 13, p1 = 25, p2 = 10
Output: 11.2

Input: a = 8, b = 16, p1 = 25, p2 = 10
Output: 7.92401

Approach: To find the height of the trapezium, construct perpendiculars DE and CF on the base AB of the trapezium as shown in the figure given below.

Now, the area of the triangle AED and area of triangle CFB can be calculated by using Heron’s Formula with sides p1, p2, and (b – a). Also, its area is equal to 0.5 * (b – a) * h
From these two equations, calculate the value of h, which is the height of the trapezoid.

Heron’s Formula: Consider a triangle with sides a, b and c, then 
Area of triangle, A = (s (s – a)(s – b)(s – c))1/2, where s = (a + b + c)/2

Also, A = 0.5 * base * height
After rearranging the terms, the height of the trapezoid = (A * 2) / Base

Below is the implementation of the above approach:

C++




// C++ program for the above approach
 
#include <bits/stdc++.h>
using namespace std;
 
// Function to calculate height
// of the trapezoid
void findHeight(float p1, float p2,
                float b, float c)
{
    float a = max(p1, p2) - min(p1, p2);
 
    // Apply Heron's formula
    float s = (a + b + c) / 2;
 
    // Calculate the area
    float area = sqrt(s * (s - a)
                      * (s - b) * (s - c));
 
    // Calculate height of trapezoid
    float height = (area * 2) / a;
 
    // Print the height
    cout << "Height is: " << height;
}
 
// Driver Code
int main()
{
    // Given a, b, p1 and p2
    float p1 = 25, p2 = 10;
    float a = 14, b = 13;
 
    findHeight(p1, p2, a, b);
 
    return 0;
}


Java




// Java program to implement
// the above approach
import java.util.*;
 
class GFG
{
   
// Function to calculate height
// of the trapezoid
static void findHeight(float p1, float p2,
                float b, float c)
{
    float a = Math.max(p1, p2) - Math.min(p1, p2);
 
    // Apply Heron's formula
    float s = (a + b + c) / 2;
 
    // Calculate the area
    float area = (int)Math.sqrt(s * (s - a)
                      * (s - b) * (s - c));
 
    // Calculate height of trapezoid
    float height = (area * 2) / a;
 
    // Print the height
    System.out.print("Height is: " + height);
}
 
// Driver Code
public static void main(String args[])
{
   
    // Given a, b, p1 and p2
    float p1 = 25, p2 = 10;
    float a = 14, b = 13;
 
    findHeight(p1, p2, a, b);
}
}
 
// This code is contributed by splevel62.


Python3




# Python3 program to implement
# the above approach
import math
 
# Function to calculate height
# of the trapezoid
def findHeight(p1, p2, b, c) :            
    a = max(p1, p2) - min(p1, p2)
 
    # Apply Heron's formula
    s = (a + b + c) // 2
 
    # Calculate the area
    area = math.sqrt(s * (s - a)
                      * (s - b) * (s - c))
 
    # Calculate height of trapezoid
    height = (area * 2) / a
 
    # Print the height
    print("Height is: ",  height)
 
 
# Driver Code
 
# Given a, b, p1 and p2
p1 = 25
p2 = 10
a = 14
b = 13
 
findHeight(p1, p2, a, b)
 
# this code is contributed by sanjoy_62.


C#




// C# program to implement
// the above approach
using System;
 
public class GFG
{
   
// Function to calculate height
// of the trapezoid
static void findHeight(float p1, float p2,
                float b, float c)
{
    float a = Math.Max(p1, p2) - Math.Min(p1, p2);
 
    // Apply Heron's formula
    float s = (a + b + c) / 2;
 
    // Calculate the area
    float area = (int)Math.Sqrt(s * (s - a)
                      * (s - b) * (s - c));
 
    // Calculate height of trapezoid
    float height = (area * 2) / a;
 
    // Print the height
    Console.Write("Height is: " + height);
}
 
// Driver Code
public static void Main(String []args)
{
   
    // Given a, b, p1 and p2
    float p1 = 25, p2 = 10;
    float a = 14, b = 13;
 
    findHeight(p1, p2, a, b);
}
}
 
// This code is contributed by shikhasingrajput


Javascript




<script>
 
// JavaScript program to implement
// the above approach
 
// Function to calculate height
// of the trapezoid
function findHeight(p1, p2, b, c)
{       
    a = Math.max(p1, p2) - Math.min(p1, p2)
 
    // Apply Heron's formula
    let s = Math.floor((a + b + c)/2)
 
    // Calculate the area
    let area = Math.sqrt(s * (s - a)
                    * (s - b) * (s - c))
 
    // Calculate height of trapezoid
    height = (area * 2) / a
 
    // Print the height
    document.write("Height is: ", height)
}
 
// Driver Code
 
// Given a, b, p1 and p2
let p1 = 25
let p2 = 10
let a = 14
let b = 13
 
findHeight(p1, p2, a, b)
 
// This code is contributed by shinjanpatra
</script>


Output: 

Height is: 11.2

 

Time Complexity: O(logn)
Auxiliary Space: O(1)

Feeling lost in the world of random DSA topics, wasting time without progress? It’s time for a change! Join our DSA course, where we’ll guide you on an exciting journey to master DSA efficiently and on schedule.
Ready to dive in? Explore our Free Demo Content and join our DSA course, trusted by over 100,000 neveropen!

RELATED ARTICLES

Most Popular

Recent Comments