Monday, November 18, 2024
Google search engine
HomeData Modelling & AIProduct of nodes at k-th level in a tree represented as string

Product of nodes at k-th level in a tree represented as string

Given an integer ‘K’ and a binary tree in string format. Every node of a tree has value in range from 0 to 9. We need to find product of elements at K-th level from root. The root is at level 0. 

Note : Tree is given in the form: (node value(left subtree)(right subtree)) 

Examples: 

Input : tree = "(0(5(6()())(4()(9()())))(7(1()())(3()())))" 
        k = 2
Output : 72
Its tree representation is shown below

Elements at level k = 2 are 6, 4, 1, 3
sum of the digits of these elements = 6 * 4 * 1 * 3 = 72 


Input : tree = "(8(3(2()())(6(5()())()))(5(10()())(7(13()())())))" 
        k = 3
Output : 15
Elements at level k = 3 are 5, 1 and 3
sum of digits of these elements = 5 * 1 * 3 = 15

Approach : 

  1. Input ‘tree’ in string format and level k
  2. Initialize level = -1 and product = 1
  3. for each character ‘ch’ in ‘tree’
       3.1  if ch == ‘(‘ then
            –> level++
       3.2  else if ch == ‘)’ then
            –> level–
       3.3  else
            if level == k then
               product = product * (ch-‘0’)
  4. 4. Print product

Implementation:

C++




// C++ implementation to find product of
// digits of elements at k-th level
#include <bits/stdc++.h>
using namespace std;
 
// Function to find product of digits
// of elements at k-th level
int productAtKthLevel(string tree, int k)
{
    int level = -1;
    int product = 1; // Initialize result
    int n = tree.length();
 
    for (int i = 0; i < n; i++) {
        // increasing level number
        if (tree[i] == '(')
            level++;
 
        // decreasing level number
        else if (tree[i] == ')')
            level--;
 
        else {
            // check if current level is
            // the desired level or not
            if (level == k)
                product *= (tree[i] - '0');
        }
    }
 
    // required product
    return product;
}
 
// Driver program
int main()
{
    string tree = "(0(5(6()())(4()(9()())))(7(1()())(3()())))";
    int k = 2;
    cout << productAtKthLevel(tree, k);
    return 0;
}


Java




// Java implementation to find product of
// digits of elements at k-th level
 
class GFG
{
    // Function to find product of digits
    // of elements at k-th level
    static int productAtKthLevel(String tree, int k)
    {
        int level = -1;
         
        // Initialize result
        int product = 1;
         
        int n = tree.length();
     
        for (int i = 0; i < n; i++)
        {
            // increasing level number
            if (tree.charAt(i) == '(')
                level++;
     
            // decreasing level number
            else if (tree.charAt(i) == ')')
                level--;
     
            else
            {
                // check if current level is
                // the desired level or not
                if (level == k)
                    product *= (tree.charAt(i) - '0');
            }
        }
     
        // required product
        return product;
    }
     
    // Driver program
    public static void main(String[] args)
    {
        String tree = "(0(5(6()())(4()(9()())))(7(1()())(3()())))";
        int k = 2;
        System.out.println(productAtKthLevel(tree, k));
    }
}
 
// This code is contributed
// by Smitha Dinesh Semwal.


Python3




# Python 3 implementation
# to find product of
# digits of elements
# at k-th level
 
# Function to find
# product of digits
# of elements at
# k-th level
def productAtKthLevel(tree, k):
 
    level = -1
         
        # Initialize result
    product = 1
    n = len(tree)
 
    for i in range(0, n):
 
        # increasing level number
        if (tree[i] == '('):
            level+=1
 
        # decreasing level number
        elif (tree[i] == ')'):
            level-=1
 
        else:
            # check if current level is
            # the desired level or not
            if (level == k):
                product *= (int(tree[i]) - int('0'))
         
     
 
    # required product
    return product
 
 
# Driver program
tree = "(0(5(6()())(4()(9()())))(7(1()())(3()())))"
k = 2
 
print(productAtKthLevel(tree, k))
 
# This code is contributed by
# Smitha Dinesh Semwal


C#




// C# implementation to find
// product of digits of
// elements at k-th level
using System;
 
class GFG
{
    // Function to find product
    // of digits of elements
    // at k-th level
    static int productAtKthLevel(string tree,
                                 int k)
    {
        int level = -1;
         
        // Initialize result
        int product = 1;
         
        int n = tree.Length;
     
        for (int i = 0; i < n; i++)
        {
            // increasing
            // level number
            if (tree[i] == '(')
                level++;
     
            // decreasing
            // level number
            else if (tree[i] == ')')
                level--;
     
            else
            {
                // check if current level is
                // the desired level or not
                if (level == k)
                    product *= (tree[i] - '0');
            }
        }
     
        // required product
        return product;
    }
     
    // Driver Code
    static void Main()
    {
        string tree = "(0(5(6()())(4()(9()())))(7(1()())(3()())))";
        int k = 2;
        Console.WriteLine(productAtKthLevel(tree, k));
    }
}
 
// This code is contributed by Sam007


PHP




<?php
// php implementation to find product of
// digits of elements at k-th level
 
// Function to find product of digits
// of elements at k-th level
function productAtKthLevel($tree, $k)
{
    $level = -1;
    $product = 1; // Initialize result
    $n = strlen($tree);
 
    for ($i = 0; $i < $n; $i++)
    {
         
        // increasing level number
        if ($tree[$i] == '(')
            $level++;
 
        // decreasing level number
        else if ($tree[$i] == ')')
            $level--;
 
        else
        {
            // check if current level is
            // the desired level or not
            if ($level == $k)
                $product *= (ord($tree[$i]) -
                             ord('0'));
        }
    }
 
    // required product
    return $product;
}
 
    // Driver Code
    $tree = "(0(5(6()())(4()(9()())))(7(1()())(3()())))";
    $k = 2;
    echo productAtKthLevel($tree, $k);
 
//This code is contributed by mits
?>


Javascript




<script>
    // Javascript implementation to find
    // product of digits of
    // elements at k-th level
     
    // Function to find product
    // of digits of elements
    // at k-th level
    function productAtKthLevel(tree, k)
    {
        let level = -1;
           
        // Initialize result
        let product = 1;
           
        let n = tree.length;
       
        for (let i = 0; i < n; i++)
        {
            // increasing
            // level number
            if (tree[i] == '(')
                level++;
       
            // decreasing
            // level number
            else if (tree[i] == ')')
                level--;
       
            else
            {
                // check if current level is
                // the desired level or not
                if (level == k)
                    product *= (tree[i].charCodeAt() - '0'.charCodeAt());
            }
        }
       
        // required product
        return product;
    }
     
    let tree = "(0(5(6()())(4()(9()())))(7(1()())(3()())))";
    let k = 2;
    document.write(productAtKthLevel(tree, k));
         
</script>


Output

72

Time Complexity: O(n) 
Auxiliary Space: O(1)

Please suggest if someone has a better solution which is more efficient in terms of space and time.

Feeling lost in the world of random DSA topics, wasting time without progress? It’s time for a change! Join our DSA course, where we’ll guide you on an exciting journey to master DSA efficiently and on schedule.
Ready to dive in? Explore our Free Demo Content and join our DSA course, trusted by over 100,000 neveropen!

RELATED ARTICLES

Most Popular

Recent Comments