You are given a matrix of order N*N. The task is to find the resultant matrix by adding the mirror image of given matrix with the matrix itself.
Examples:
Input : mat[][] = {{1, 2, 3}, {4, 5, 6}, {7, 8, 9}} Output : 4 4 4 10 10 10 16 16 16 Explanation: Resultant Matrix = {{1, 2, 3}, {{3, 2, 1}, {4, 5, 6}, + {6, 5, 4}, {7, 8, 9}} {9, 8, 7}} Input : mat[][] = {{1, 2}, {3, 4}} Output : 3 3 7 7
While finding the mirror image of matrix the row of each element will remain same but the value of its columns will reshuffle. For any element Aij its new position in mirror image will be Ai(n-j). After getting the mirror image of matrix add it to original matrix and print the result.
Points to take care:
- Indexing of matrix will start from 0, 0 and ends on n-1, n-1 hence position of any element Aij will be Ai(n-1-j).
- While printing the result take care of proper output format
Below is the implementation of the above approach:
C++
// C++ program to find sum of matrix and // its mirror image #include <bits/stdc++.h> #define N 4 using namespace std; // Function to print the resultant matrix void printSum( int mat[][N]) { for ( int i = 0; i < N; i++) { for ( int j = 0; j < N; j++) { cout << setw(3) << mat[i][N - 1 - j] + mat[i][j] << " " ; } cout << "\n" ; } } // Driver Code int main() { int mat[N][N] = { { 2, 4, 6, 8 }, { 1, 3, 5, 7 }, { 8, 6, 4, 2 }, { 7, 5, 3, 1 } }; printSum(mat); return 0; } |
Java
// Java program to find sum of // matrix and its mirror image import java.io.*; class GFG { static int N = 4 ; // Function to print the // resultant matrix static void printSum( int mat[][]) { for ( int i = 0 ; i < N; i++) { for ( int j = 0 ; j < N; j++) { System.out.print((mat[i][N - 1 - j] + mat[i][j]) + " " ); } System.out.println(); } } // Driver Code public static void main (String[] args) { int mat[][] = { { 2 , 4 , 6 , 8 }, { 1 , 3 , 5 , 7 }, { 8 , 6 , 4 , 2 }, { 7 , 5 , 3 , 1 } }; printSum(mat); } } // This code is contributed by anuj_67 |
Python3
# Python 3 program to find sum of matrix # and its mirror image N = 4 # Function to print the resultant matrix def printSum(mat): for i in range (N): for j in range (N): print ( '{:>3}' . format (mat[i][N - 1 - j] + mat[i][j]), end = " " ) print ( "\n" , end = "") # Driver Code if __name__ = = '__main__' : mat = [[ 2 , 4 , 6 , 8 ], [ 1 , 3 , 5 , 7 ], [ 8 , 6 , 4 , 2 ], [ 7 , 5 , 3 , 1 ]] printSum(mat) # This code is contributed by # Surendra_Gangwar |
C#
// C# program to find sum of // matrix and its mirror image using System; class GFG { static int N = 4; // Function to print the // resultant matrix static void printSum( int [,]mat) { for ( int i = 0; i < N; i++) { for ( int j = 0; j < N; j++) { Console.Write((mat[i, N - 1 - j] + mat[i, j]) + " " ); } Console.WriteLine(); } } // Driver Code public static void Main () { int [,]mat = { { 2, 4, 6, 8 }, { 1, 3, 5, 7 }, { 8, 6, 4, 2 }, { 7, 5, 3, 1 } }; printSum(mat); } } // This code is contributed by shs.. |
PHP
<?php // PHP program to find sum of // matrix and its mirror image // Function to print the // resultant matrix function printSum( $mat ) { for ( $i = 0; $i < 4; $i ++) { for ( $j = 0; $j < 4; $j ++) { echo ( $mat [ $i ][4 - 1 - $j ] + $mat [ $i ][ $j ]) . " " ; } echo "\n" ; } } // Driver Code $mat = array ( array (2, 4, 6, 8 ), array (1, 3, 5, 7), array (8, 6, 4, 2), array (7, 5, 3, 1)); printSum( $mat ); // This code is contributed // by Akanksha Rai ?> |
Javascript
<script> // Javascript program to find sum of matrix and // its mirror image var N = 4 // Function to print the resultant matrix function printSum(mat) { for ( var i = 0; i < N; i++) { for ( var j = 0; j < N; j++) { document.write( (mat[i][N - 1 - j] + mat[i][j]) + " " ); } document.write( "<br>" ); } } // Driver Code var mat = [ [ 2, 4, 6, 8 ], [ 1, 3, 5, 7 ], [ 8, 6, 4, 2 ], [ 7, 5, 3, 1 ] ]; printSum(mat); </script> |
10 10 10 10 8 8 8 8 10 10 10 10 8 8 8 8
Complexity Analysis:
- Time complexity : O(N2) for given input matrix of size N*N
- Auxiliary Space: O(1)
Ready to dive in? Explore our Free Demo Content and join our DSA course, trusted by over 100,000 neveropen!