Given a matrix grid[][] with dimension M × N of integers, the task is to print the matrix elements using DFS traversal.
Examples:
Input: mat[][] = {{1, 2, 3, 4}, {5, 6, 7, 8}, {9, 10, 11, 12}, {13, 14, 15, 16}}
Output: 1 2 3 4 8 12 16 15 11 7 6 10 14 13 9 5
Explanation: The matrix elements in the order of their Depth First Search traversal are 1 2 3 4 8 12 16 15 11 7 6 10 14 13 9 5.Input: mat[][] = {{0, 1, 9, 4}, {1, 2, 3, 4}, {0, 0, -1, -1}, {-1, -1, 0, 1}}
Output: 0 1 9 4 4 -1 1 0 -1 3 2 0 -1 -1 0 1
Recursive Approach: The idea is to use a Recursive depth-first search for traversing the matrix and printing its elements. Follow the steps below to solve the problem:
- Initialize a 2D boolean vector, say vis[][], to keep track of already visited and unvisited indices.
- Define a function, say isValid(i, j), to check if the position (i, j) is valid or not i.e (i, j) should be inside the matrix and not visited.
- Define a recursive function DFS(i, j):
- On each call, mark the current position (i, j) visited and print the element at that position.
- Make the recursive call for all the adjacent sides, i.e DFS(i + 1, j), DFS(i, j + 1), DFS(i – 1, j) and DFS(i, j – 1) if respective positions are valid i.e., not visited and are within the matrix.
- Finally, call the function DFS(0, 0) to start the DFS Traversal to print the matrix.
Below is the implementation of the above approach:
C++
// C++ program for the above approach #include <bits/stdc++.h> using namespace std; // Direction vectors int dRow[] = { -1, 0, 1, 0 }; int dCol[] = { 0, 1, 0, -1 }; // Function to check if current // position is valid or not bool isValid(vector<vector< bool > >& vis, int row, int col, int COL, int ROW) { // Check if the cell is out of bounds if (row < 0 || col < 0 || col > COL - 1 || row > ROW - 1) return false ; // Check if the cell is visited or not if (vis[row][col] == true ) return false ; return true ; } // Utility function to print matrix // elements using DFS Traversal void DFSUtil( int row, int col, vector<vector< int > > grid, vector<vector< bool > >& vis, int M, int N) { // Mark the current cell visited vis[row][col] = true ; // Print the element at the cell cout << grid[row][col] << " " ; // Traverse all four adjacent // cells of the current element for ( int i = 0; i < 4; i++) { int x = row + dRow[i]; int y = col + dCol[i]; // Check if x and y is // valid index or not if (isValid(vis, x, y, M, N)) DFSUtil(x, y, grid, vis, M, N); } } // Function to print the matrix elements void DFS( int row, int col, vector<vector< int > > grid, int M, int N) { // Initialize a visiting matrix vector<vector< bool > > vis( M + 1, vector< bool >(N + 1, false )); // Function call to print matrix // elements by DFS traversal DFSUtil(0, 0, grid, vis, M, N); } // Driver Code int main() { // Given matrix vector<vector< int > > grid{ { 1, 2, 3, 4 }, { 5, 6, 7, 8 }, { 9, 10, 11, 12 }, { 13, 14, 15, 16 } }; // Row of the matrix int M = grid.size(); // Column of the matrix int N = grid[0].size(); DFS(0, 0, grid, M, N); return 0; } |
Java
// Java program to implement // the above approach import java.util.*; class GFG { // Direction vectors static int dRow[] = { - 1 , 0 , 1 , 0 }; static int dCol[] = { 0 , 1 , 0 , - 1 }; // Function to check if current // position is valid or not static boolean isValid( boolean [][] vis, int row, int col, int COL, int ROW) { // Check if the cell is out of bounds if (row < 0 || col < 0 || col > COL - 1 || row > ROW - 1 ) return false ; // Check if the cell is visited or not if (vis[row][col] == true ) return false ; return true ; } // Utility function to print matrix // elements using DFS Traversal static void DFSUtil( int row, int col, int [][] grid, boolean [][] vis, int M, int N) { // Mark the current cell visited vis[row][col] = true ; // Print the element at the cell System.out.print(grid[row][col] + " " ); // Traverse all four adjacent // cells of the current element for ( int i = 0 ; i < 4 ; i++) { int x = row + dRow[i]; int y = col + dCol[i]; // Check if x and y is // valid index or not if (isValid(vis, x, y, M, N)) DFSUtil(x, y, grid, vis, M, N); } } // Function to print the matrix elements static void DFS( int row, int col, int [][] grid, int M, int N) { // Initialize a visiting matrix boolean [][] vis = new boolean [M + 1 ][N + 1 ]; for ( int i = 0 ; i < M + 1 ; i++) { for ( int j = 0 ; j < N + 1 ; j++) { vis[i][j] = false ; } } // Function call to print matrix // elements by DFS traversal DFSUtil( 0 , 0 , grid, vis, M, N); } // Driver Code public static void main(String args[]) { // Given matrix int [][] grid = { { 1 , 2 , 3 , 4 }, { 5 , 6 , 7 , 8 }, { 9 , 10 , 11 , 12 }, { 13 , 14 , 15 , 16 } }; // Row of the matrix int M = grid.length; // Column of the matrix int N = grid[ 0 ].length; DFS( 0 , 0 , grid, M, N); } } // This code is contributed by susmitakundugoaldanga. |
Python3
# Python3 program for the above approach # Direction vectors dRow = [ - 1 , 0 , 1 , 0 ] dCol = [ 0 , 1 , 0 , - 1 ] # Function to check if current # position is valid or not def isValid(row, col, COL, ROW): global vis # Check if the cell is out of bounds if (row < 0 or col < 0 or col > COL - 1 or row > ROW - 1 ): return False # Check if the cell is visited or not if (vis[row][col] = = True ): return False return True # Utility function to print matrix # elements using DFS Traversal def DFSUtil(row, col,grid, M, N): global vis # Mark the current cell visited vis[row][col] = True # Print element at the cell print (grid[row][col], end = " " ) # Traverse all four adjacent # cells of the current element for i in range ( 4 ): x = row + dRow[i] y = col + dCol[i] # Check if x and y is # valid index or not if (isValid(x, y, M, N)): DFSUtil(x, y, grid, M, N) # Function to print matrix elementsdef def DFS(row, col,grid, M, N): global vis # Initialize a visiting matrix # Function call to print matrix # elements by DFS traversal DFSUtil( 0 , 0 , grid, M, N) # Driver Code if __name__ = = '__main__' : # Given matrix grid = [ [ 1 , 2 , 3 , 4 ], [ 5 , 6 , 7 , 8 ], [ 9 , 10 , 11 , 12 ], [ 13 , 14 , 15 , 16 ] ] # Row of the matrix M = len (grid) # Column of the matrix N = len (grid[ 0 ]) vis = [[ False for i in range (M)] for i in range (N)] DFS( 0 , 0 , grid, M, N) # This code is contributed by mohit kumar 29. |
C#
// C# program to implement // the above approach using System; public class GFG { // Direction vectors static int []dRow = { -1, 0, 1, 0 }; static int []dCol = { 0, 1, 0, -1 }; // Function to check if current // position is valid or not static bool isValid( bool [,] vis, int row, int col, int COL, int ROW) { // Check if the cell is out of bounds if (row < 0 || col < 0 || col > COL - 1 || row > ROW - 1) return false ; // Check if the cell is visited or not if (vis[row,col] == true ) return false ; return true ; } // Utility function to print matrix // elements using DFS Traversal static void DFSUtil( int row, int col, int [,] grid, bool [,] vis, int M, int N) { // Mark the current cell visited vis[row,col] = true ; // Print the element at the cell Console.Write(grid[row,col] + " " ); // Traverse all four adjacent // cells of the current element for ( int i = 0; i < 4; i++) { int x = row + dRow[i]; int y = col + dCol[i]; // Check if x and y is // valid index or not if (isValid(vis, x, y, M, N)) DFSUtil(x, y, grid, vis, M, N); } } // Function to print the matrix elements static void DFS( int row, int col, int [,] grid, int M, int N) { // Initialize a visiting matrix bool [,] vis = new bool [M + 1,N + 1]; for ( int i = 0; i < M + 1; i++) { for ( int j = 0; j < N + 1; j++) { vis[i,j] = false ; } } // Function call to print matrix // elements by DFS traversal DFSUtil(0, 0, grid, vis, M, N); } // Driver Code public static void Main(String []args) { // Given matrix int [,] grid = { { 1, 2, 3, 4 }, { 5, 6, 7, 8 }, { 9, 10, 11, 12 }, { 13, 14, 15, 16 } }; // Row of the matrix int M = grid.GetLength(0); // Column of the matrix int N = grid.GetLength(1); DFS(0, 0, grid, M, N); } } // This code is contributed by 29AjayKumar |
Javascript
<script> // javascript program of the above approach // Direction vectors let dRow = [ -1, 0, 1, 0 ]; let dCol = [ 0, 1, 0, -1 ]; // Function to check if current // position is valid or not function isValid(vis, row, col, COL, ROW) { // Check if the cell is out of bounds if (row < 0 || col < 0 || col > COL - 1 || row > ROW - 1) return false ; // Check if the cell is visited or not if (vis[row][col] == true ) return false ; return true ; } // Utility function to print matrix // elements using DFS Traversal function DFSUtil(row, col, grid, vis, M, N) { // Mark the current cell visited vis[row][col] = true ; // Print the element at the cell document.write(grid[row][col] + " " ); // Traverse all four adjacent // cells of the current element for (let i = 0; i < 4; i++) { let x = row + dRow[i]; let y = col + dCol[i]; // Check if x and y is // valid index or not if (isValid(vis, x, y, M, N)) DFSUtil(x, y, grid, vis, M, N); } } // Function to print the matrix elements function DFS(row, col, grid, M, N) { // Initialize a visiting matrix let vis = new Array(M + 1); // Loop to create 2D array using 1D array for ( var i = 0; i < vis.length; i++) { vis[i] = new Array(2); } for (let i = 0; i < M + 1; i++) { for (let j = 0; j < N + 1; j++) { vis[i][j] = false ; } } // Function call to print matrix // elements by DFS traversal DFSUtil(0, 0, grid, vis, M, N); } // Driver Code // Given matrix let grid = [[ 1, 2, 3, 4 ], [ 5, 6, 7, 8 ], [ 9, 10, 11, 12 ], [ 13, 14, 15, 16 ]]; // Row of the matrix let M = grid.length; // Column of the matrix let N = grid[0].length; DFS(0, 0, grid, M, N); </script> |
1 2 3 4 8 12 16 15 11 7 6 10 14 13 9 5
Time Complexity: O(N*M)
Auxiliary Space: O(N*M)
Iterative Approach: The idea is to traverse the matrix using iterative depth-first search and print the matrix elements. Follow the steps below to solve the problem:
- Define a function, say isValid(i, j), to check if the position (i, j) is valid or not, i.e (i, j) lies inside the matrix and not visited.
- Initialize a 2d boolean vector, say vis[][], for keeping track of a position say (i, j) whether it has been already visited or not.
- Initialize a stack<pair<int, int>> say S to implement the DFS traversal.
- First push the first cell (0, 0) in the stack S marking the cell visited.
- Iterate while stack S is not empty:
- In each iteration, mark the top element of stack say (i, j) visited and print the element at that position and remove the top element from the stack S.
- Push the adjacent cells i.e (i + 1, j), (i, j + 1), (i – 1, j) and (i, j – 1) into the stack if respective positions are valid i.e., not visited and are within the matrix.
Below is the implementation of the above approach:
C++
// C++ program for the above approach #include <bits/stdc++.h> using namespace std; // Direction vectors int dRow[] = { -1, 0, 1, 0 }; int dCol[] = { 0, 1, 0, -1 }; // Function to check if curruent // position is valid or not bool isValid(vector<vector< bool > >& vis, int row, int col, int COL, int ROW) { // Check if the cell is out // of bounds if (row < 0 || col < 0 || col > COL - 1 || row > ROW - 1) return false ; // Check if the cell is visited if (vis[row][col] == true ) return false ; return true ; } // Function to print the matrix elements void DFS_iterative(vector<vector< int > > grid, int M, int N) { // Stores if a position in the // matrix been visited or not vector<vector< bool > > vis( M + 5, vector< bool >(N + 5, false )); // Initialize stack to implement DFS stack<pair< int , int > > st; // Push the first position of grid[][] // in the stack st.push({ 0, 0 }); // Mark the cell (0, 0) visited vis[0][0] = true ; while (!st.empty()) { // Stores top element of stack pair< int , int > p = st.top(); // Delete the top() element // of stack st.pop(); int row = p.first; int col = p.second; // Print element at the cell cout << grid[row][col] << " " ; // Traverse in all four adjacent // sides of current positions for ( int i = 0; i < 4; i++) { int x = row + dRow[i]; int y = col + dCol[i]; // Check if x and y is valid // position and then push // the position of current // cell in the stack if (isValid(vis, x, y, M, N)) { // Push the current cell st.push({ x, y }); // Mark current cell visited vis[x][y] = true ; } } } } // Driver Code int main() { // Given matrix vector<vector< int > > grid{ { 1, 2, 3, 4 }, { 5, 6, 7, 8 }, { 9, 10, 11, 12 }, { 13, 14, 15, 16 } }; // Row of the matrix int M = grid.size(); // Column of the matrix int N = grid[0].size(); DFS_iterative(grid, M, N); return 0; } |
Java
// Java program for the above approach import java.util.*; public class Main { public static class Pair { int Item1, Item2; public Pair( int Item1, int Item2) { this .Item1 = Item1; this .Item2 = Item2; } } // Direction vectors static int [] dRow = { - 1 , 0 , 1 , 0 }; static int [] dCol = { 0 , 1 , 0 , - 1 }; static Vector<Vector<Boolean>> vis; // Function to check if curruent // position is valid or not static boolean isValid( int row, int col, int COL, int ROW) { // Check if the cell is out // of bounds if (row < 0 || col < 0 || col > COL - 1 || row > ROW - 1 ) return false ; // Check if the cell is visited if (vis.get(row).get(col) == true ) return false ; return true ; } // Function to print the matrix elements static void DFS_iterative( int [][] grid, int M, int N) { // Stores if a position in the // matrix been visited or not vis = new Vector<Vector<Boolean>>(); for ( int i = 0 ; i < M + 5 ; i++) { vis.add( new Vector<Boolean>()); for ( int j = 0 ; j < N + 5 ; j++) { vis.get(i).add( false ); } } // Initialize stack to implement DFS Vector<Pair> st = new Vector<Pair>(); // Push the first position of grid[][] // in the stack st.add( new Pair( 0 , 0 )); // Mark the cell (0, 0) visited vis.get( 0 ).set( 0 , true ); while (st.size() > 0 ) { // Stores top element of stack Pair p = st.get(st.size() - 1 ); // Delete the top() element // of stack st.remove(st.size() - 1 ); int row = p.Item1; int col = p.Item2; // Print element at the cell System.out.print(grid[row][col] + " " ); // Traverse in all four adjacent // sides of current positions for ( int i = 0 ; i < 4 ; i++) { int x = row + dRow[i]; int y = col + dCol[i]; // Check if x and y is valid // position and then push // the position of current // cell in the stack if (isValid(x, y, M, N)) { // Push the current cell st.add( new Pair(x, y)); // Mark current cell visited vis.get(x).set(y, true ); } } } } public static void main(String[] args) { // Given matrix int [][] grid = { { 1 , 2 , 3 , 4 }, { 5 , 6 , 7 , 8 }, { 9 , 10 , 11 , 12 }, { 13 , 14 , 15 , 16 } }; // Row of the matrix int M = 4 ; // Column of the matrix int N = 4 ; DFS_iterative(grid, M, N); } } // This code is contributed by suresh07. |
Python3
# Python3 program for the above approach # Direction vectors dRow = [ - 1 , 0 , 1 , 0 ] dCol = [ 0 , 1 , 0 , - 1 ] vis = [] # Function to check if curruent # position is valid or not def isValid(row, col, COL, ROW): global vis # Check if the cell is out # of bounds if (row < 0 or col < 0 or col > COL - 1 or row > ROW - 1 ): return False # Check if the cell is visited if (vis[row][col] = = True ): return False return True # Function to print the matrix elements def DFS_iterative(grid, M, N): global vis # Stores if a position in the # matrix been visited or not vis = [] for i in range (M + 5 ): vis.append([]) for j in range (N + 5 ): vis[i].append( False ) # Initialize stack to implement DFS st = [] # Push the first position of grid[][] # in the stack st.append([ 0 , 0 ]) # Mark the cell (0, 0) visited vis[ 0 ][ 0 ] = True while ( len (st) > 0 ): # Stores top element of stack p = st[ - 1 ] # Delete the top() element # of stack st.pop() row = p[ 0 ] col = p[ 1 ] # Print element at the cell print (grid[row][col], " ", end = " ") # Traverse in all four adjacent # sides of current positions for i in range ( 4 ): x = row + dRow[i] y = col + dCol[i] # Check if x and y is valid # position and then push # the position of current # cell in the stack if (isValid(x, y, M, N)): # Push the current cell st.append([ x, y ]) # Mark current cell visited vis[x][y] = True # Given matrix grid = [ [ 1 , 2 , 3 , 4 ], [ 5 , 6 , 7 , 8 ], [ 9 , 10 , 11 , 12 ], [ 13 , 14 , 15 , 16 ] ] # Row of the matrix M = len (grid) # Column of the matrix N = len (grid[ 0 ]) DFS_iterative(grid, M, N) # This code is contributed by mukesh07. |
C#
// C# program for the above approach using System; using System.Collections.Generic; class GFG { // Direction vectors static int [] dRow = { -1, 0, 1, 0 }; static int [] dCol = { 0, 1, 0, -1 }; static List<List< bool >> vis; // Function to check if curruent // position is valid or not static bool isValid( int row, int col, int COL, int ROW) { // Check if the cell is out // of bounds if (row < 0 || col < 0 || col > COL - 1 || row > ROW - 1) return false ; // Check if the cell is visited if (vis[row][col] == true ) return false ; return true ; } // Function to print the matrix elements static void DFS_iterative( int [,] grid, int M, int N) { // Stores if a position in the // matrix been visited or not vis = new List<List< bool >>(); for ( int i = 0; i < M + 5; i++) { vis.Add( new List< bool >()); for ( int j = 0; j < N + 5; j++) { vis[i].Add( false ); } } // Initialize stack to implement DFS List<Tuple< int , int >> st = new List<Tuple< int , int >>(); // Push the first position of grid[][] // in the stack st.Add( new Tuple< int , int >(0, 0)); // Mark the cell (0, 0) visited vis[0][0] = true ; while (st.Count > 0) { // Stores top element of stack Tuple< int , int > p = st[st.Count - 1]; // Delete the top() element // of stack st.RemoveAt(st.Count - 1); int row = p.Item1; int col = p.Item2; // Print element at the cell Console.Write(grid[row,col] + " " ); // Traverse in all four adjacent // sides of current positions for ( int i = 0; i < 4; i++) { int x = row + dRow[i]; int y = col + dCol[i]; // Check if x and y is valid // position and then push // the position of current // cell in the stack if (isValid(x, y, M, N)) { // Push the current cell st.Add( new Tuple< int , int >(x, y)); // Mark current cell visited vis[x][y] = true ; } } } } static void Main() { // Given matrix int [,] grid = { { 1, 2, 3, 4 }, { 5, 6, 7, 8 }, { 9, 10, 11, 12 }, { 13, 14, 15, 16 } }; // Row of the matrix int M = 4; // Column of the matrix int N = 4; DFS_iterative(grid, M, N); } } // This code is contributed by divyesh072019. |
Javascript
<script> // Javascript program for the above approach // Direction vectors let dRow = [ -1, 0, 1, 0 ]; let dCol = [ 0, 1, 0, -1 ]; let vis; // Function to check if curruent // position is valid or not function isValid(row, col, COL, ROW) { // Check if the cell is out // of bounds if (row < 0 || col < 0 || col > COL - 1 || row > ROW - 1) return false ; // Check if the cell is visited if (vis[row][col] == true ) return false ; return true ; } // Function to print the matrix elements function DFS_iterative(grid, M, N) { // Stores if a position in the // matrix been visited or not vis = []; for (let i = 0; i < M + 5; i++) { vis.push([]); for (let j = 0; j < N + 5; j++) { vis[i].push( false ); } } // Initialize stack to implement DFS let st = []; // Push the first position of grid[][] // in the stack st.push([ 0, 0 ]); // Mark the cell (0, 0) visited vis[0][0] = true ; while (st.length > 0) { // Stores top element of stack let p = st[st.length - 1]; // Delete the top() element // of stack st.pop(); let row = p[0]; let col = p[1]; // Print element at the cell document.write(grid[row][col] + " " ); // Traverse in all four adjacent // sides of current positions for (let i = 0; i < 4; i++) { let x = row + dRow[i]; let y = col + dCol[i]; // Check if x and y is valid // position and then push // the position of current // cell in the stack if (isValid(x, y, M, N)) { // Push the current cell st.push([ x, y ]); // Mark current cell visited vis[x][y] = true ; } } } } // Given matrix let grid = [ [ 1, 2, 3, 4 ], [ 5, 6, 7, 8 ], [ 9, 10, 11, 12 ], [ 13, 14, 15, 16 ] ]; // Row of the matrix let M = grid.length; // Column of the matrix let N = grid[0].length; DFS_iterative(grid, M, N); // This code is contributed by decode2207. </script> |
1 5 9 13 14 15 16 12 8 7 3 4 11 10 6 2
Time Complexity: O(N*M)
Auxiliary Space: O(N*M)
Ready to dive in? Explore our Free Demo Content and join our DSA course, trusted by over 100,000 neveropen!