Given an array of N numbers. Two players X and Y play a game where at every step one player selects a number. One number can be selected only once. After all the numbers have been selected, player X wins if the absolute difference between the sum of numbers collected by X and Y is divisible by 4, else Y wins.
Note: Player X starts the game and numbers are selected optimally at every step.
Examples:
Input: a[] = {4, 8, 12, 16}
Output: X
X chooses 4
Y chooses 12
X chooses 8
Y chooses 16
|(4 + 8) – (12 + 16)| = |12 – 28| = 16 which is divisible by 4.
Hence, X wins
Input: a[] = {7, 9, 1}
Output: Y
Approach: The following steps can be followed to solve the problem:
- Initialize count0, count1, count2 and count3 to 0.
- Iterate for every number in the array and increase the above counters accordingly if a[i] % 4 == 0, a[i] % 4 == 1, a[i] % 4 == 2 or a[i] % 4 == 3.
- If count0, count1, count2 and count3 are all even numbers then X wins else Y will win.
Below is the implementation of the above approach:
C++
// C++ implementation of the approach #include <bits/stdc++.h> using namespace std; // Function to decide the winner int decideWinner( int a[], int n) { int count0 = 0; int count1 = 0; int count2 = 0; int count3 = 0; // Iterate for all numbers in the array for ( int i = 0; i < n; i++) { // Condition to count // If mod gives 0 if (a[i] % 4 == 0) count0++; // If mod gives 1 else if (a[i] % 4 == 1) count1++; // If mod gives 2 else if (a[i] % 4 == 2) count2++; // If mod gives 3 else if (a[i] % 4 == 3) count3++; } // Check the winning condition for X if (count0 % 2 == 0 && count1 % 2 == 0 && count2 % 2 == 0 && count3 % 2 == 0) return 1; else return 2; } // Driver code int main() { int a[] = { 4, 8, 5, 9 }; int n = sizeof (a) / sizeof (a[0]); if (decideWinner(a, n) == 1) cout << "X wins" ; else cout << "Y wins" ; return 0; } |
Java
// Java implementation of the approach class GFG { // Function to decide the winner static int decideWinner( int []a, int n) { int count0 = 0 ; int count1 = 0 ; int count2 = 0 ; int count3 = 0 ; // Iterate for all numbers in the array for ( int i = 0 ; i < n; i++) { // Condition to count // If mod gives 0 if (a[i] % 4 == 0 ) count0++; // If mod gives 1 else if (a[i] % 4 == 1 ) count1++; // If mod gives 2 else if (a[i] % 4 == 2 ) count2++; // If mod gives 3 else if (a[i] % 4 == 3 ) count3++; } // Check the winning condition for X if (count0 % 2 == 0 && count1 % 2 == 0 && count2 % 2 == 0 && count3 % 2 == 0 ) return 1 ; else return 2 ; } // Driver code public static void main(String args[]) { int []a = { 4 , 8 , 5 , 9 }; int n = a.length; if (decideWinner(a, n) == 1 ) System.out.print( "X wins" ); else System.out.print( "Y wins" ); } } // This code is contributed by Akanksha Rai |
Python3
# Python3 implementation of the approach # Function to decide the winner def decideWinner(a, n): count0 = 0 count1 = 0 count2 = 0 count3 = 0 # Iterate for all numbers in the array for i in range (n): # Condition to count # If mod gives 0 if (a[i] % 4 = = 0 ): count0 + = 1 # If mod gives 1 elif (a[i] % 4 = = 1 ): count1 + = 1 # If mod gives 2 elif (a[i] % 4 = = 2 ): count2 + = 1 # If mod gives 3 elif (a[i] % 4 = = 3 ): count3 + = 1 # Check the winning condition for X if (count0 % 2 = = 0 and count1 % 2 = = 0 and count2 % 2 = = 0 and count3 % 2 = = 0 ): return 1 else : return 2 # Driver code a = [ 4 , 8 , 5 , 9 ] n = len (a) if (decideWinner(a, n) = = 1 ): print ( "X wins" ) else : print ( "Y wins" ) # This code is contributed by mohit kumar |
C#
// C# implementation of the approach using System; class GFG { // Function to decide the winner static int decideWinner( int []a, int n) { int count0 = 0; int count1 = 0; int count2 = 0; int count3 = 0; // Iterate for all numbers in the array for ( int i = 0; i < n; i++) { // Condition to count // If mod gives 0 if (a[i] % 4 == 0) count0++; // If mod gives 1 else if (a[i] % 4 == 1) count1++; // If mod gives 2 else if (a[i] % 4 == 2) count2++; // If mod gives 3 else if (a[i] % 4 == 3) count3++; } // Check the winning condition for X if (count0 % 2 == 0 && count1 % 2 == 0 && count2 % 2 == 0 && count3 % 2 == 0) return 1; else return 2; } // Driver code public static void Main() { int []a = { 4, 8, 5, 9 }; int n = a.Length; if (decideWinner(a, n) == 1) Console.Write( "X wins" ); else Console.Write( "Y wins" ); } } // This code is contributed by Akanksha Rai |
PHP
<?php // PHP implementation of the approach // Function to decide the winner function decideWinner( $a , $n ) { $count0 = 0; $count1 = 0; $count2 = 0; $count3 = 0; // Iterate for all numbers in the array for ( $i = 0; $i < $n ; $i ++) { // Condition to count // If mod gives 0 if ( $a [ $i ] % 4 == 0) $count0 ++; // If mod gives 1 else if ( $a [ $i ] % 4 == 1) $count1 ++; // If mod gives 2 else if ( $a [ $i ] % 4 == 2) $count2 ++; // If mod gives 3 else if ( $a [ $i ] % 4 == 3) $count3 ++; } // Check the winning condition for X if ( $count0 % 2 == 0 && $count1 % 2 == 0 && $count2 % 2 == 0 && $count3 % 2 == 0) return 1; else return 2; } // Driver code $a = array ( 4, 8, 5, 9 ); $n = count ( $a ); if (decideWinner( $a , $n ) == 1) echo "X wins" ; else echo "Y wins" ; // This code is contributed by Ryuga ?> |
Javascript
<script> // javascript implementation of the approach // Function to decide the winner function decideWinner(a , n) { var count0 = 0; var count1 = 0; var count2 = 0; var count3 = 0; // Iterate for all numbers in the array for (i = 0; i < n; i++) { // Condition to count // If mod gives 0 if (a[i] % 4 == 0) count0++; // If mod gives 1 else if (a[i] % 4 == 1) count1++; // If mod gives 2 else if (a[i] % 4 == 2) count2++; // If mod gives 3 else if (a[i] % 4 == 3) count3++; } // Check the winning condition for X if (count0 % 2 == 0 && count1 % 2 == 0 && count2 % 2 == 0 && count3 % 2 == 0) return 1; else return 2; } // Driver code var a = [ 4, 8, 5, 9 ]; var n = a.length; if (decideWinner(a, n) == 1) document.write( "X wins" ); else document.write( "Y wins" ); // This code contributed by Rajput-Ji </script> |
X wins
Time Complexity: O(n)
Auxiliary Space: O(1)
Ready to dive in? Explore our Free Demo Content and join our DSA course, trusted by over 100,000 neveropen!