Given an array arr[] consisting of N positive integers, the task is to find the permutation of first N natural numbers such that the given array arr[] is the prefix maximum array of that permutation. If no such permutation exists, then print “-1”.
Examples:
Input: arr[] = {1, 3, 4, 5, 5}
Output: 1 3 4 5 2
Explanation:
The prefix maximum array of the permutation {1, 3, 4, 5, 2} is {1, 3, 4, 5, 5}.Input: arr[] = {1, 1, 3, 4}
Output: -1
Naive Approach: The simplest approach to solve the given problem is to generate all possible permutations of the first N natural numbers and check if there exists any permutation whose prefix maximum array is the array arr[] or not. If any such permutation is found, then print that permutation. Otherwise, print “-1”.
Time Complexity: O(N * N!)
Auxiliary Space: O(1)
Efficient Approach: The above approach can be optimized based on the observation that the first occurrence of every number in the arr[] will be at the same place as that in the required permutation. Therefore, after filling the first occurrence of all the elements at their correct positions, fill the remaining numbers in ascending order. Follow the steps below to solve the problem:
- Initialize an array ans[] of size N with all elements as 0 and a vector V[] to store all the unvisited elements in the array.
- Initialize a HashMap M to store the index of the first occurrence of elements
- Traverse the array arr[] and if arr[i] is not present in M, then store the index of arr[i] in M and update ans[i] to arr[i].
- Iterate over the range [1, N] using the variable i and check if i is not present in M, store it in the vector V[].
- Traverse the array ans[] and if the value of ans[i] is 0, then update ans[i] to V[j] and increment j by 1.
- After completing the above steps, check if the maximum element prefix array is the same as arr[]. If found to be true, then print the array ans[] as the result. Otherwise, print “-1”.
Below is the implementation of the above approach:
C++
// C++ program for the above approach #include <bits/stdc++.h> using namespace std; // Function to check if the maximum // prefix array of ans[] is equal // to array arr[] bool checkPermutation( int ans[], int a[], int n) { // Initialize a variable, Max int Max = INT_MIN; // Traverse the array, ans[] for ( int i = 0; i < n; i++) { // Store the maximum value // upto index i Max = max(Max, ans[i]); // If it is not equal to a[i], // then return false if (Max != a[i]) return false ; } // Otherwise return false return true ; } // Function to find the permutation of // the array whose prefix maximum array // is same as the given array a[] void findPermutation( int a[], int n) { // Stores the required permutation int ans[n] = { 0 }; // Stores the index of first // occurrence of elements unordered_map< int , int > um; // Traverse the array a[] for ( int i = 0; i < n; i++) { // If a[i] is not present // in um, then store it in um if (um.find(a[i]) == um.end()) { // Update the ans[i] // to a[i] ans[i] = a[i]; um[a[i]] = i; } } // Stores the unvisited numbers vector< int > v; int j = 0; // Fill the array, v[] for ( int i = 1; i <= n; i++) { // Store the index if (um.find(i) == um.end()) { v.push_back(i); } } // Traverse the array, ans[] for ( int i = 0; i < n; i++) { // Fill v[j] at places where // ans[i] is 0 if (ans[i] == 0) { ans[i] = v[j]; j++; } } // Check if the current permutation // maximum prefix array is same as // the given array a[] if (checkPermutation(ans, a, n)) { // If true, the print the // permutation for ( int i = 0; i < n; i++) { cout << ans[i] << " " ; } } // Otherwise, print -1 else cout << "-1" ; } // Driver Code int main() { int arr[] = { 1, 3, 4, 5, 5 }; int N = sizeof (arr) / sizeof (arr[0]); // Function Call findPermutation(arr, N); return 0; } |
Java
// Java program for the above approach import java.io.*; import java.lang.*; import java.util.*; class GFG{ // Function to check if the maximum // prefix array of ans[] is equal // to array arr[] static boolean checkPermutation( int ans[], int a[], int n) { // Initialize a variable, Max int Max = Integer.MIN_VALUE; // Traverse the array, ans[] for ( int i = 0 ; i < n; i++) { // Store the maximum value // upto index i Max = Math.max(Max, ans[i]); // If it is not equal to a[i], // then return false if (Max != a[i]) return false ; } // Otherwise return false return true ; } // Function to find the permutation of // the array whose prefix maximum array // is same as the given array a[] static void findPermutation( int a[], int n) { // Stores the required permutation int ans[] = new int [n]; // Stores the index of first // occurrence of elements HashMap<Integer, Integer> um = new HashMap<>(); // Traverse the array a[] for ( int i = 0 ; i < n; i++) { // If a[i] is not present // in um, then store it in um if (!um.containsKey(a[i])) { // Update the ans[i] // to a[i] ans[i] = a[i]; um.put(a[i], i); } } // Stores the unvisited numbers ArrayList<Integer> v = new ArrayList<>(); int j = 0 ; // Fill the array, v[] for ( int i = 1 ; i <= n; i++) { // Store the index if (!um.containsKey(i)) { v.add(i); } } // Traverse the array, ans[] for ( int i = 0 ; i < n; i++) { // Fill v[j] at places where // ans[i] is 0 if (ans[i] == 0 ) { ans[i] = v.get(j); j++; } } // Check if the current permutation // maximum prefix array is same as // the given array a[] if (checkPermutation(ans, a, n)) { // If true, the print the // permutation for ( int i = 0 ; i < n; i++) { System.out.print(ans[i] + " " ); } } // Otherwise, print -1 else System.out.println( "-1" ); } // Driver Code public static void main(String[] args) { int arr[] = { 1 , 3 , 4 , 5 , 5 }; int N = arr.length; // Function Call findPermutation(arr, N); } } // This code is contributed by Kingash |
Python3
# Python3 program for the above approach import sys # Function to check if the maximum # prefix array of ans[] is equal # to array arr[] def checkPermutation(ans, a, n): # Initialize a variable, Max Max = - sys.maxsize - 1 # Traverse the array, ans[] for i in range (n): # Store the maximum value # upto index i Max = max ( Max , ans[i]) # If it is not equal to a[i], # then return false if ( Max ! = a[i]): return False # Otherwise return false return True # Function to find the permutation of # the array whose prefix maximum array # is same as the given array a[] def findPermutation(a, n): # Stores the required permutation ans = [ 0 ] * n # Stores the index of first # occurrence of elements um = {} # Traverse the array a[] for i in range (n): # If a[i] is not present # in um, then store it in um if (a[i] not in um): # Update the ans[i] # to a[i] ans[i] = a[i] um[a[i]] = i # Stores the unvisited numbers v = [] j = 0 # Fill the array, v[] for i in range ( 1 , n + 1 ): # Store the index if (i not in um): v.append(i) # Traverse the array, ans[] for i in range (n): # Fill v[j] at places where # ans[i] is 0 if (ans[i] = = 0 ): ans[i] = v[j] j + = 1 # Check if the current permutation # maximum prefix array is same as # the given array a[] if (checkPermutation(ans, a, n)): # If true, the print the # permutation for i in range (n): print (ans[i], end = " " ) # Otherwise, print -1 else : print ( "-1" ) # Driver Code if __name__ = = "__main__" : arr = [ 1 , 3 , 4 , 5 , 5 ] N = len (arr) # Function Call findPermutation(arr, N) # This code is contributed by ukasp |
C#
// C# program for the above approach using System; using System.Collections.Generic; class GFG{ // Function to check if the maximum // prefix array of ans[] is equal // to array arr[] static bool checkPermutation( int [] ans, int [] a, int n) { // Initialize a variable, Max int Max = Int32.MinValue; // Traverse the array, ans[] for ( int i = 0; i < n; i++) { // Store the maximum value // upto index i Max = Math.Max(Max, ans[i]); // If it is not equal to a[i], // then return false if (Max != a[i]) return false ; } // Otherwise return false return true ; } // Function to find the permutation of // the array whose prefix maximum array // is same as the given array a[] static void findPermutation( int [] a, int n) { // Stores the required permutation int [] ans = new int [n]; // Stores the index of first // occurrence of elements Dictionary< int , int > um = new Dictionary< int , int >(); // Traverse the array a[] for ( int i = 0; i < n; i++) { // If a[i] is not present // in um, then store it in um if (!um.ContainsKey(a[i])) { // Update the ans[i] // to a[i] ans[i] = a[i]; um[a[i]] = i; } } // Stores the unvisited numbers List< int > v = new List< int >(); int j = 0; // Fill the array, v[] for ( int i = 1; i <= n; i++) { // Store the index if (!um.ContainsKey(i)) { v.Add(i); } } // Traverse the array, ans[] for ( int i = 0; i < n; i++) { // Fill v[j] at places where // ans[i] is 0 if (ans[i] == 0) { ans[i] = v[j]; j++; } } // Check if the current permutation // maximum prefix array is same as // the given array a[] if (checkPermutation(ans, a, n)) { // If true, the print the // permutation for ( int i = 0; i < n; i++) { Console.Write(ans[i] + " " ); } } // Otherwise, print -1 else Console.Write( "-1" ); } // Driver Code public static void Main() { int [] arr = { 1, 3, 4, 5, 5 }; int N = arr.Length; // Function Call findPermutation(arr, N); } } // This code is contributed by sanjoy_62 |
Javascript
<script> // JavaScript program for the above approach // Function to check if the maximum // prefix array of ans[] is equal // to array arr[] function checkPermutation(ans,a,n) { // Initialize a variable, Max let Max = Number.MIN_VALUE; // Traverse the array, ans[] for (let i = 0; i < n; i++) { // Store the maximum value // upto index i Max = Math.max(Max, ans[i]); // If it is not equal to a[i], // then return false if (Max != a[i]) return false ; } // Otherwise return false return true ; } // Function to find the permutation of // the array whose prefix maximum array // is same as the given array a[] function findPermutation(a,n) { // Stores the required permutation let ans = new Array(n); for (let i=0;i<n;i++) { ans[i]=0; } // Stores the index of first // occurrence of elements let um = new Map(); // Traverse the array a[] for (let i = 0; i < n; i++) { // If a[i] is not present // in um, then store it in um if (!um.has(a[i])) { // Update the ans[i] // to a[i] ans[i] = a[i]; um.set(a[i], i); } } // Stores the unvisited numbers let v = []; let j = 0; // Fill the array, v[] for (let i = 1; i <= n; i++) { // Store the index if (!um.has(i)) { v.push(i); } } // Traverse the array, ans[] for (let i = 0; i < n; i++) { // Fill v[j] at places where // ans[i] is 0 if (ans[i] == 0) { ans[i] = v[j]; j++; } } // Check if the current permutation // maximum prefix array is same as // the given array a[] if (checkPermutation(ans, a, n)) { // If true, the print the // permutation for (let i = 0; i < n; i++) { document.write(ans[i] + " " ); } } // Otherwise, print -1 else document.write( "-1" ); } // Driver Code let arr=[1, 3, 4, 5, 5]; let N = arr.length; // Function Call findPermutation(arr, N); // This code is contributed by avanitrachhadiya2155 </script> |
1 3 4 5 2
Time Complexity: O(NlogN)
Auxiliary Space: O(N)
Ready to dive in? Explore our Free Demo Content and join our DSA course, trusted by over 100,000 neveropen!