Tuesday, November 19, 2024
Google search engine
HomeData Modelling & AINumbers in a Range with given Digital Root

Numbers in a Range with given Digital Root

Given an integer K and a range of consecutive numbers [L, R]. The task is to count the numbers from the given range which have digital root as K (1 ? K ? 9). Digital root is sum of digits of a number until it becomes a single digit number. For example, 256 -> 2 + 5 + 6 = 13 -> 1 + 3 = 4.

Examples:  

Input: L = 10, R = 22, K = 3 
Output:
12 and 21 are the only numbers from the range whose digit sum is 3.

Input: L = 100, R = 200, K = 5 
Output: 11 
 

Approach:  

  • First thing is to note that for any number Sum of Digits is equal to Number % 9. If remainder is 0, then sum of digits is 9.
  • So if K = 9, then replace K with 0.
  • Task, now is to find count of numbers in range L to R with modulo 9 equal to K.
  • Divide the entire range into the maximum possible groups of 9 starting with L (TotalRange / 9), since in each range there will be exactly one number with modulo 9 equal to K.
  • Loop over rest number of elements from R to R – count of rest elements, and check if any number satisfies the condition.

Below is the implementation of the above approach:  

C++




// C++ implementation of the approach
#include <bits/stdc++.h>
#define ll long long int
using namespace std;
 
// Function to return the count
// of required numbers
int countNumbers(int L, int R, int K)
{
    if (K == 9)
        K = 0;
 
    // Count of numbers present
    // in given range
    int totalnumbers = R - L + 1;
 
    // Number of groups of 9 elements
    // starting from L
    int factor9 = totalnumbers / 9;
 
    // Left over elements not covered
    // in factor 9
    int rem = totalnumbers % 9;
 
    // One Number in each group of 9
    int ans = factor9;
 
    // To check if any number in rem
    // satisfy the property
    for (int i = R; i > R - rem; i--) {
        int rem1 = i % 9;
        if (rem1 == K)
            ans++;
    }
 
    return ans;
}
 
// Driver code
int main()
{
    int L = 10;
    int R = 22;
    int K = 3;
    cout << countNumbers(L, R, K);
 
    return 0;
}


Java




// Java implementation of the approach
 
class GFG {
 
// Function to return the count
// of required numbers
    static int countNumbers(int L, int R, int K) {
        if (K == 9) {
            K = 0;
        }
 
        // Count of numbers present
        // in given range
        int totalnumbers = R - L + 1;
 
        // Number of groups of 9 elements
        // starting from L
        int factor9 = totalnumbers / 9;
 
        // Left over elements not covered
        // in factor 9
        int rem = totalnumbers % 9;
 
        // One Number in each group of 9
        int ans = factor9;
 
        // To check if any number in rem
        // satisfy the property
        for (int i = R; i > R - rem; i--) {
            int rem1 = i % 9;
            if (rem1 == K) {
                ans++;
            }
        }
 
        return ans;
    }
 
// Driver code
    public static void main(String[] args) {
        int L = 10;
        int R = 22;
        int K = 3;
        System.out.println(countNumbers(L, R, K));
    }
}
/* This code contributed by PrinciRaj1992 */


Python3




# Python3 implementation of the approach
 
# Function to return the count
# of required numbers
def countNumbers(L, R, K):
 
    if (K == 9):
        K = 0
 
    # Count of numbers present
    # in given range
    totalnumbers = R - L + 1
 
    # Number of groups of 9 elements
    # starting from L
    factor9 = totalnumbers // 9
 
    # Left over elements not covered
    # in factor 9
    rem = totalnumbers % 9
 
    # One Number in each group of 9
    ans = factor9
 
    # To check if any number in rem
    # satisfy the property
    for i in range(R, R - rem, -1):
        rem1 = i % 9
        if (rem1 == K):
            ans += 1
     
    return ans
 
# Driver code
L = 10
R = 22
K = 3
print(countNumbers(L, R, K))
 
# This code is contributed
# by mohit kumar


C#




// C# implementation of the approach
using System ;
 
class GFG
{
 
    // Function to return the count
    // of required numbers
    static int countNumbers(int L, int R, int K)
    {
        if (K == 9)
        {
            K = 0;
        }
 
        // Count of numbers present
        // in given range
        int totalnumbers = R - L + 1;
 
        // Number of groups of 9 elements
        // starting from L
        int factor9 = totalnumbers / 9;
 
        // Left over elements not covered
        // in factor 9
        int rem = totalnumbers % 9;
 
        // One Number in each group of 9
        int ans = factor9;
 
        // To check if any number in rem
        // satisfy the property
        for (int i = R; i > R - rem; i--)
        {
            int rem1 = i % 9;
            if (rem1 == K)
            {
                ans++;
            }
        }
 
        return ans;
    }
 
    // Driver code
    public static void Main()
    {
        int L = 10;
        int R = 22;
        int K = 3;
         
        Console.WriteLine(countNumbers(L, R, K));
    }
}
 
/* This code is contributed by Ryuga */


PHP




<?php
// PHP implementation of the approach
 
// Function to return the count
// of required numbers
function countNumbers($L, $R, $K)
{
    if ($K == 9)
        $K = 0;
 
    // Count of numbers present
    // in given range
    $totalnumbers = $R - $L + 1;
 
    // Number of groups of 9 elements
    // starting from L
    $factor9 = intval($totalnumbers / 9);
 
    // Left over elements not covered
    // in factor 9
    $rem = $totalnumbers % 9;
 
    // One Number in each group of 9
    $ans = $factor9;
 
    // To check if any number in rem
    // satisfy the property
    for ($i = $R; $i > $R - $rem; $i--)
    {
        $rem1 = $i % 9;
        if ($rem1 == $K)
            $ans++;
    }
 
    return $ans;
}
 
// Driver code
$L = 10;
$R = 22;
$K = 3;
echo countNumbers($L, $R, $K);
 
// This code is contributed by Ita_c
?>


Javascript




<script>
 
// Javascript implementation of the approach
 
// Function to return the count
// of required numbers
function countNumbers(L, R, K)
{
    if (K == 9)
    {
        K = 0;
    }
 
    // Count of numbers present
    // in given range
    var totalnumbers = R - L + 1;
 
    // Number of groups of 9 elements
    // starting from L
    var factor9 = totalnumbers / 9;
 
    // Left over elements not covered
    // in factor 9
    var rem = totalnumbers % 9;
 
    // One Number in each group of 9
    var ans = factor9;
 
    // To check if any number in rem
    // satisfy the property
    for(var i = R; i > R - rem; i--)
    {
        var rem1 = i % 9;
        if (rem1 == K)
        {
            ans++;
        }
    }
 
    return ans;
}
  
// Driver Code
var L = 10;
var R = 22;
var K = 3;
 
document.write(Math.round(countNumbers(L, R, K)));
 
// This code is contributed by Ankita saini
                     
</script>


Output: 

2

 

Time Complexity: O(R)
Auxiliary Space: O(1) 

Feeling lost in the world of random DSA topics, wasting time without progress? It’s time for a change! Join our DSA course, where we’ll guide you on an exciting journey to master DSA efficiently and on schedule.
Ready to dive in? Explore our Free Demo Content and join our DSA course, trusted by over 100,000 neveropen!

RELATED ARTICLES

Most Popular

Recent Comments