You are given two positive integer value n and s. You have to find the total number of such integer from 1 to n such that the difference of integer and its digit sum is greater than given s.
Examples :
Input : n = 20, s = 5 Output :11 Explanation : Integer from 1 to 9 have diff(integer - digitSum) = 0 but for 10 to 20 they have diff(value - digitSum) > 5 Input : n = 20, s = 20 Output : 0 Explanation : Integer from 1 to 20 have diff (integer - digitSum) > 5
The very first and basic approach to solve this question is to check for all integer starting from 1 to n and for each check whether integer minus digit sum is greater than s or not. This will become very time costly because we have to traverse 1 to n and for each integer we also have to calculate the digit sum.
Before moving to better approach lets have some key analysis about this questions and its features:
- For the largest possible integer (say long long int i.e. 10^18), the maximum possible digit sum is 9*18 (when all of digits are nine) = 162. This means in any case all the integer greater than s + 162 satisfy the condition of integer – digitSum > s.
- All integer less than s can not satisfy the given condition for sure.
- All the integers within a tens range (0-9, 10-19…100-109) does have same value of integer minus digitSum.
Using above three key features we can shorten our approach and time complexity in a manner where we have to iterate only over s to s+163 integers. Beside checking for all integer within range we only check for each 10th integer (e.g 150, 160, 170..).
Algorithm:
// if n < s then return 0 if n<s return 0 else // iterate for s to min(n, s+163) for i=s to i min(n, s+163) // return n-i+1 if (i-digitSum)>s return (n-i+1) // if no such integer found return 0 return 0
C++
// Program to find number of integer such that // integer - digSum > s #include <bits/stdc++.h> using namespace std; // function for digit sum int digitSum( long long int n) { int digSum = 0; while (n) { digSum += n % 10; n /= 10; } return digSum; } // function to calculate count of integer s.t. // integer - digSum > s long long int countInteger( long long int n, long long int s) { // if n < s no integer possible if (n < s) return 0; // iterate for s range and then calculate // total count of such integer if starting // integer is found for ( long long int i = s; i <= min(n, s + 163); i++) if ((i - digitSum(i)) > s) return (n - i + 1); // if no integer found return 0 return 0; } // driver program int main() { long long int n = 1000, s = 100; cout << countInteger(n, s); return 0; } |
Java
// Java Program to find number of integer // such that integer - digSum > s import java.io.*; class GFG { // function for digit sum static int digitSum( long n) { int digSum = 0 ; while (n > 0 ) { digSum += n % 10 ; n /= 10 ; } return digSum; } // function to calculate count of integer s.t. // integer - digSum > s public static long countInteger( long n, long s) { // if n < s no integer possible if (n < s) return 0 ; // iterate for s range and then calculate // total count of such integer if starting // integer is found for ( long i = s; i <= Math.min(n, s + 163 ); i++) if ((i - digitSum(i)) > s) return (n - i + 1 ); // if no integer found return 0 return 0 ; } // Driver program public static void main(String args[]) { long n = 1000 , s = 100 ; System.out.println(countInteger(n, s)); } } // This code is contributed by Anshika Goyal. |
Python3
# Program to find number # of integer such that # integer - digSum > s # function for digit sum def digitSum(n): digSum = 0 while (n> 0 ): digSum + = n % 10 n / / = 10 return digSum # function to calculate # count of integer s.t. # integer - digSum > s def countInteger(n, s): # if n < s no integer possible if (n < s): return 0 # iterate for s range # and then calculate # total count of such # integer if starting # integer is found for i in range (s, min (n, s + 163 ) + 1 ): if ((i - digitSum(i)) > s): return (n - i + 1 ) # if no integer found return 0 return 0 # driver code n = 1000 s = 100 print (countInteger(n, s)) # This code is contributed # by Anant Agarwal. |
C#
// C# Program to find number of integer // such that integer - digSum > s using System; class GFG { // function for digit sum static long digitSum( long n) { long digSum = 0; while (n > 0) { digSum += n % 10; n /= 10; } return digSum; } // function to calculate count of integer s.t. // integer - digSum > s public static long countInteger( long n, long s) { // if n < s no integer possible if (n < s) return 0; // iterate for s range and then calculate // total count of such integer if starting // integer is found for ( long i = s; i <= Math.Min(n, s + 163); i++) if ((i - digitSum(i)) > s) return (n - i + 1); // if no integer found return 0 return 0; } // Driver program public static void Main() { long n = 1000, s = 100; Console.WriteLine(countInteger(n, s)); } } // This code is contributed by vt_m. |
PHP
<?php // Program to find number of integer // such that integer - digSum > s // function for digit sum function digitSum( $n ) { $digSum = 0; while ( $n ) { $digSum += $n % 10; $n /= 10; } return $digSum ; } // function to calculate count of // integer s.t. integer - digSum > s function countInteger( $n , $s ) { // if n < s no integer possible if ( $n < $s ) return 0; // iterate for s range and then // calculate total count of such // integer if starting integer is found for ( $i = $s ; $i <= min( $n , $s + 163); $i ++) if (( $i - digitSum( $i )) > $s ) return ( $n - $i + 1); // if no integer found return 0 return 0; } // Driver Code $n = 1000; $s = 100; echo countInteger( $n , $s ); // This code is contributed by anuj_67. ?> |
Javascript
<script> // JavaScript Program to find number of integer // such that integer - digSum > s // function for digit sum function digitSum(n) { let digSum = 0; while (n > 0) { digSum += n % 10; n /= 10; } return digSum; } // function to calculate count of integer s.t. // integer - digSum > s function countInteger(n, s) { // if n < s no integer possible if (n < s) return 0; // iterate for s range and then calculate // total count of such integer if starting // integer is found for (let i = s; i <= Math.min(n, s + 163); i++) if ((i - digitSum(i)) > s) return (n - i + 1); // if no integer found return 0 return 0; } // Driver Code let n = 1000, s = 100; document.write(countInteger(n, s)); // This code is contributed by splevel62. </script> |
Output :
891
Time complexity: O(min(n,s+163)*n)
Space complexity : O(1)
Ready to dive in? Explore our Free Demo Content and join our DSA course, trusted by over 100,000 neveropen!