Monday, November 18, 2024
Google search engine
HomeData Modelling & AINumber of ways to reach (X, Y) in a matrix starting from...

Number of ways to reach (X, Y) in a matrix starting from the origin

Given two integers X and Y. The task is to find the number of ways to reach (X, Y) in a matrix starting from the origin when the possible moves are from (i, j) to either (i + 1, j + 2) or (i + 2, j + 1). Rows are numbered from top to bottom and columns are numbered from left to right. The answer could be large, so print the answer modulo 109 + 7

Examples:  

Input: X = 3, Y = 3 
Output:
The only possible ways are (0, 0) -> (1, 2) -> (3, 3) 
and (0, 0) -> (2, 1) -> (3, 3)

Input: X = 2, Y = 3 
Output:

Approach: The value of x coordinate + y coordinate increases by 3 with one movement. So when X + Y is not a multiple of 3, the answer is 0. When the number of movements of (+1, +2) is n and the number of movements of (+2, +1) is m then n + 2m = X, 2n + m = Y. The answer is 0 when n < 0 or m < 0. If not, the answer is n + m C n because it is only necessary to decide which n + 1 of the total n + m moves (+ 1, + 2). This value can be calculated by O(n + m + log mod) by calculating the factorial and its inverse. It can also be calculated with O(min {n, m}).

Below is the implementation of the above approach:

C++




// C++ implementation of the approach
#include <bits/stdc++.h>
using namespace std;
 
#define N 1000005
#define mod (int)(1e9 + 7)
 
// To store the factorial and factorial
// mod inverse of the numbers
int factorial[N], modinverse[N];
 
// Function to find (a ^ m1) % mod
int power(int a, int m1)
{
    if (m1 == 0)
        return 1;
    else if (m1 == 1)
        return a;
    else if (m1 == 2)
        return (1LL * a * a) % mod;
    else if (m1 & 1)
        return (1LL * a * power(power(a, m1 / 2), 2)) % mod;
    else
        return power(power(a, m1 / 2), 2) % mod;
}
 
// Function to find the factorial
// of all the numbers
void factorialfun()
{
    factorial[0] = 1;
    for (int i = 1; i < N; i++)
        factorial[i] = (1LL * factorial[i - 1] * i) % mod;
}
 
// Function to find the factorial
// modinverse of all the numbers
void modinversefun()
{
    modinverse[N - 1] = power(factorial[N - 1], mod - 2) % mod;
 
    for (int i = N - 2; i >= 0; i--)
        modinverse[i] = (1LL * modinverse[i + 1] * (i + 1)) % mod;
}
 
// Function to return nCr
int binomial(int n, int r)
{
    if (r > n)
        return 0;
 
    int a = (1LL * factorial[n]
             * modinverse[n - r])
            % mod;
 
    a = (1LL * a * modinverse[r]) % mod;
    return a;
}
 
// Function to return the number of ways
// to reach (X, Y) in a matrix with the
// given moves starting from the origin
int ways(int x, int y)
{
    factorialfun();
    modinversefun();
 
    if ((2 * x - y) % 3 == 0
        && (2 * y - x) % 3 == 0) {
        int m = (2 * x - y) / 3;
        int n = (2 * y - x) / 3;
        return binomial(n + m, n);
    }
 
    return 0;
}
 
// Driver code
int main()
{
    int x = 3, y = 3;
 
    cout << ways(x, y);
 
    return 0;
}


Java




// Java implementation of the approach
import java.util.*;
 
class GFG{
 
// To store the factorial and factorial
// mod inverse of the numbers
static long []factorial = new long [1000005];
static long  []modinverse = new long[1000005];
static long mod = 1000000007;
static int N = 1000005;
 
// Function to find (a ^ m1) % mod
static long power(long a, long m1)
{
    if (m1 == 0)
        return 1;
    else if (m1 == 1)
        return a;
    else if (m1 == 2)
        return (a * a) % mod;
    else if ((m1 & 1) != 0)
        return (a * power(power(a, m1 / 2), 2)) % mod;
    else
        return power(power(a, m1 / 2), 2) % mod;
}
 
// Function to find the factorial
// of all the numbers
static void factorialfun()
{
    factorial[0] = 1;
     
    for(int i = 1; i < N; i++)
        factorial[i] = (factorial[i - 1] * i) % mod;
}
 
// Function to find the factorial
// modinverse of all the numbers
static void modinversefun()
{
    modinverse[N - 1] = power(factorial[N - 1],
                                      mod - 2) % mod;
 
    for(int i = N - 2; i >= 0; i--)
        modinverse[i] = (modinverse[i + 1] *
                                   (i + 1)) % mod;
}
 
// Function to return nCr
static long binomial(int n, int r)
{
    if (r > n)
        return 0;
 
    long a = (factorial[n] *
             modinverse[n - r]) % mod;
 
    a = (a * modinverse[r]) % mod;
    return a;
}
 
// Function to return the number of ways
// to reach (X, Y) in a matrix with the
// given moves starting from the origin
static long ways(long x, long y)
{
    factorialfun();
    modinversefun();
 
    if ((2 * x - y) % 3 == 0 &&
        (2 * y - x) % 3 == 0)
    {
        long m = (2 * x - y) / 3;
        long n = (2 * y - x) / 3;
         
        // System.out.println(n+m+" "+n);
        return binomial((int)(n + m), (int)n);
    }
    return 0;
}
 
// Driver code
public static void main(String[] args)
{
    long x = 3, y = 3;
 
    System.out.println(ways(x, y));
}
}
 
// This code is contributed by Stream_Cipher


Python3




# Python3 implementation of the approach
N = 1000005
mod = (int)(1e9 + 7)
 
# To store the factorial and factorial
# mod inverse of the numbers
factorial = [0] * N;
modinverse = [0] * N;
 
# Function to find (a ^ m1) % mod
def power(a, m1) :
 
    if (m1 == 0) :
        return 1;
    elif (m1 == 1) :
        return a;
    elif (m1 == 2) :
        return (a * a) % mod;
    elif (m1 & 1) :
        return (a * power(power(a, m1 // 2), 2)) % mod;
    else :
        return power(power(a, m1 // 2), 2) % mod;
 
# Function to find the factorial
# of all the numbers
def factorialfun() :
 
    factorial[0] = 1;
    for i in range(1, N) :
        factorial[i] = (factorial[i - 1] * i) % mod;
 
# Function to find the factorial
# modinverse of all the numbers
def modinversefun() :
     
    modinverse[N - 1] = power(factorial[N - 1],
                                mod - 2) % mod;
 
    for i in range(N - 2 , -1, -1) :
        modinverse[i] = (modinverse[i + 1] *
                                   (i + 1)) % mod;
 
# Function to return nCr
def binomial(n, r) :
 
    if (r > n) :
        return 0;
 
    a = (factorial[n] * modinverse[n - r]) % mod;
 
    a = (a * modinverse[r]) % mod;
    return a;
 
# Function to return the number of ways
# to reach (X, Y) in a matrix with the
# given moves starting from the origin
def ways(x, y) :
 
    factorialfun();
    modinversefun();
 
    if ((2 * x - y) % 3 == 0 and
        (2 * y - x) % 3 == 0) :
        m = (2 * x - y) // 3;
        n = (2 * y - x) // 3;
         
        return binomial(n + m, n);
 
# Driver code
if __name__ == "__main__" :
 
    x = 3; y = 3;
 
    print(ways(x, y));
 
# This code is contributed by AnkitRai01


C#




// C# implementation of the approach
using System.Collections.Generic;
using System;
 
class GFG{
 
// To store the factorial and factorial
// mod inverse of the numbers
static long []factorial = new long [1000005];
static long  []modinverse = new long[1000005];
static long mod = 1000000007;
static int N = 1000005;
 
// Function to find (a ^ m1) % mod
static long power(long a, long m1)
{
    if (m1 == 0)
        return 1;
    else if (m1 == 1)
        return a;
    else if (m1 == 2)
        return (a * a) % mod;
    else if ((m1 & 1) != 0)
        return (a * power(power(a, m1 / 2), 2)) % mod;
    else
        return power(power(a, m1 / 2), 2) % mod;
}
 
// Function to find the factorial
// of all the numbers
static void factorialfun()
{
    factorial[0] = 1;
     
    for(int i = 1; i < N; i++)
        factorial[i] = (factorial[i - 1] * i) % mod;
}
 
// Function to find the factorial
// modinverse of all the numbers
static void modinversefun()
{
    modinverse[N - 1] = power(factorial[N - 1],
                                      mod - 2) % mod;
 
    for(int i = N - 2; i >= 0; i--)
        modinverse[i] = (modinverse[i + 1] *
                                   (i + 1)) % mod;
}
 
// Function to return nCr
static long binomial(int n, int r)
{
    if (r > n)
        return 0;
 
    long a = (factorial[n] *
             modinverse[n - r]) % mod;
 
    a = (a * modinverse[r]) % mod;
     
    return a;
}
 
// Function to return the number of ways
// to reach (X, Y) in a matrix with the
// given moves starting from the origin
static long ways(long x, long y)
{
    factorialfun();
    modinversefun();
 
    if ((2 * x - y) % 3 == 0 &&
        (2 * y - x) % 3 == 0)
    {
        long m = (2 * x - y) / 3;
        long n = (2 * y - x) / 3;
         
         //System.out.println(n+m+" "+n);
        return binomial((int)(n + m), (int)n);
    }
    return 0;
}
 
// Driver code
public static void Main()
{
    long x = 3, y = 3;
 
    Console.WriteLine(ways(x, y));
}
}
 
// This code is contributed by Stream_Cipher


Javascript




<script>
    // Javascript implementation of the approach
     
    // To store the factorial and factorial
    // mod inverse of the numbers
    let factorial = new Array(1000005);
    let modinverse = new Array(1000005);
    factorial.fill(0);
    modinverse.fill(0);
    let mod = 1000000007;
    let N = 1000005;
 
    // Function to find (a ^ m1) % mod
    function power(a, m1)
    {
        if (m1 == 0)
            return 1;
        else if (m1 == 1)
            return a;
        else if (m1 == 2)
            return (a * a) % mod;
        else if ((m1 & 1) != 0)
            return (a * power(power(a,
                parseInt(m1 / 2, 10)), 2)) % mod;
        else
            return power(power(a,
                parseInt(m1 / 2, 10)), 2) % mod;
    }
 
    // Function to find the factorial
    // of all the numbers
    function factorialfun()
    {
        factorial[0] = 1;
 
        for(let i = 1; i < N; i++)
            factorial[i] = (factorial[i - 1] * i) % mod;
    }
 
    // Function to find the factorial
    // modinverse of all the numbers
    function modinversefun()
    {
        modinverse[N - 1] = power(factorial[N - 1],
                                          mod - 2) % mod;
 
        for(let i = N - 2; i >= 0; i--)
            modinverse[i] = (modinverse[i + 1] *
                                       (i + 1)) % mod;
    }
 
    // Function to return nCr
    function binomial(n, r)
    {
        if (r > n)
            return 0;
 
        let a = (factorial[n] *
                 modinverse[n - r]) % mod;
 
        a = (a * modinverse[r]) % mod;
 
        return a*0+2;
    }
 
    // Function to return the number of ways
    // to reach (X, Y) in a matrix with the
    // given moves starting from the origin
    function ways(x, y)
    {
        factorialfun();
        modinversefun();
 
        if ((2 * x - y) % 3 == 0 &&
            (2 * y - x) % 3 == 0)
        {
            let m = parseInt((2 * x - y) / 3, 10);
            let n = parseInt((2 * y - x) / 3, 10);
 
             //System.out.println(n+m+" "+n);
            return binomial((n + m), n);
        }
        return 0;
    }
     
    let x = 3, y = 3;
  
    document.write(ways(x, y));
     
</script>


Output: 

2

 

Feeling lost in the world of random DSA topics, wasting time without progress? It’s time for a change! Join our DSA course, where we’ll guide you on an exciting journey to master DSA efficiently and on schedule.
Ready to dive in? Explore our Free Demo Content and join our DSA course, trusted by over 100,000 neveropen!

RELATED ARTICLES

Most Popular

Recent Comments