Monday, November 18, 2024
Google search engine
HomeData Modelling & AINumber of shortest paths to reach every cell from bottom-left cell in...

Number of shortest paths to reach every cell from bottom-left cell in the grid

Given two number N and M. The task is to find the number of shortest paths to reach the cell(i, j) in the grid of size N × M when the moves started from the bottom-left corner
Note: cell(i, j) represents the ith row and jth column in the grid
Below image shows some of the shortest paths to reach cell(1, 4) in 4 × 4 grid 
 

Examples : 
 

Input : N = 3, M = 4 
Output : 1 3 6 10 
         1 2 3 4 
         1 1 1 1  

Input : N = 5, M = 2 
Output : 1 5 
         1 4 
         1 3 
         1 2 
         1 1 

 

Approach : An efficient approach is to compute the grid starting from the bottom-left corner. 

  • The number of shortest paths to reach cell(n, i) is 1, where, 1 < = i < = M
  • The number of shortest paths to reach cell(i, 1) is 1, where, 1 < = i < = N
  • The number of shortest paths to reach cell(i, j) are the sum the number of shortest paths of cell(i-1, j) and (i, j+1), where, 1 < = j < = M and 1 < = i < = N

Below is the implementation of the above approach : 
 

C++




// CPP program to find number of shortest paths
#include <bits/stdc++.h>
using namespace std;
 
// Function to find number of shortest paths
void NumberOfShortestPaths(int n, int m)
{
    int a[n][m];
 
    for (int i = 0; i < n; i++)
        memset(a[i], 0, sizeof(a[i]));
 
    // Compute the grid starting from
    // the bottom-left corner
    for (int i = n - 1; i >= 0; i--) {
        for (int j = 0; j < m; j++) {
            if (j == 0 or i == n - 1)
                a[i][j] = 1;
            else
                a[i][j] = a[i][j - 1] + a[i + 1][j];
        }
    }
 
    // Print the grid
    for (int i = 0; i < n; i++) {
        for (int j = 0; j < m; j++) {
            cout << a[i][j] << " ";
        }
        cout << endl;
    }
}
 
// Driver code
int main()
{
    int n = 5, m = 2;
 
    // Function call
    NumberOfShortestPaths(n, m);
 
    return 0;
}


Java




// Java program to find number of shortest paths
import java.io.*;
class GFG
{
 
// Function to find number of shortest paths
static void NumberOfShortestPaths(int n, int m)
{
    int [][]a = new int[n][m];
 
    // Compute the grid starting from
    // the bottom-left corner
    for (int i = n - 1; i >= 0; i--)
    {
        for (int j = 0; j < m; j++)
        {
            if (j == 0 || i == n - 1)
                a[i][j] = 1;
            else
                a[i][j] = a[i][j - 1] + a[i + 1][j];
        }
    }
 
    // Print the grid
    for (int i = 0; i < n; i++)
    {
        for (int j = 0; j < m; j++)
        {
            System.out.print(a[i][j] + " ");
        }
        System.out.println();
    }
}
 
// Driver code
public static void main(String[] args)
{
    int n = 5, m = 2;
 
    // Function call
    NumberOfShortestPaths(n, m);
}
}
 
// This code is contributed by Princi Singh


Python3




# Python 3 program to find
# number of shortest paths
 
# Function to find number of shortest paths
def NumberOfShortestPaths(n, m):
    a = [[0 for i in range(m)]
            for j in range(n)]
 
    for i in range(n):
        for j in range(m):
            a[i][j] = 0
 
    # Compute the grid starting from
    # the bottom-left corner
    i = n - 1
    while(i >= 0):
        for j in range(m):
            if (j == 0 or i == n - 1):
                a[i][j] = 1
            else:
                a[i][j] = a[i][j - 1] + \
                          a[i + 1][j]
 
        i -= 1
 
    # Print the grid
    for i in range(n):
        for j in range(m):
            print(a[i][j], end = " ")
        print("\n", end = "")
 
# Driver code
if __name__ == '__main__':
    n = 5
    m = 2
 
    # Function call
    NumberOfShortestPaths(n, m)
     
# This code is contributed by
# Surendra_Gangwar


C#




// C# program to find number of shortest paths
using System;
 
class GFG
{
 
// Function to find number of shortest paths
static void NumberOfShortestPaths(int n, int m)
{
    int [,]a = new int[n, m];
 
    // Compute the grid starting from
    // the bottom-left corner
    for (int i = n - 1; i >= 0; i--)
    {
        for (int j = 0; j < m; j++)
        {
            if (j == 0 || i == n - 1)
                a[i, j] = 1;
            else
                a[i, j] = a[i, j - 1] + a[i + 1, j];
        }
    }
 
    // Print the grid
    for (int i = 0; i < n; i++)
    {
        for (int j = 0; j < m; j++)
        {
            Console.Write(a[i, j] + " ");
        }
        Console.Write("\n");
    }
}
 
// Driver code
public static void Main(String[] args)
{
    int n = 5, m = 2;
 
    // Function call
    NumberOfShortestPaths(n, m);
}
}
 
// This code is contributed by PrinciRaj1992


Javascript




<script>
// javascript program to find number of shortest paths   
// Function to find number of shortest paths
    function NumberOfShortestPaths(n , m) {
        var a = Array(n).fill().map(() => Array(m).fill(0));
 
        // Compute the grid starting from
        // the bottom-left corner
        for (var i = n - 1; i >= 0; i--) {
            for (j = 0; j < m; j++) {
                if (j == 0 || i == n - 1)
                    a[i][j] = 1;
                else
                    a[i][j] = a[i][j - 1] + a[i + 1][j];
            }
        }
 
        // Print the grid
        for (var i = 0; i < n; i++) {
            for (j = 0; j < m; j++) {
                document.write(a[i][j] + " ");
            }
            document.write("<br/>");
        }
    }
 
    // Driver code
        var n = 5, m = 2;
 
        // Function call
        NumberOfShortestPaths(n, m);
 
// This code is contributed by gauravrajput1
</script>


Output

1 5 
1 4 
1 3 
1 2 
1 1 

Time complexity: O(N × M), where N is number of rows and M is number of columns of the grid.
Auxiliary Space: O(N × M), where N is number of rows and M is number of columns of the grid.

Feeling lost in the world of random DSA topics, wasting time without progress? It’s time for a change! Join our DSA course, where we’ll guide you on an exciting journey to master DSA efficiently and on schedule.
Ready to dive in? Explore our Free Demo Content and join our DSA course, trusted by over 100,000 neveropen!

RELATED ARTICLES

Most Popular

Recent Comments