Tuesday, November 19, 2024
Google search engine
HomeData Modelling & AINumber of pairs such that their HCF and LCM is equal

Number of pairs such that their HCF and LCM is equal

Given an array a[] of non-negative integers. The task is to count the number of pairs (i, j) in the array such that LCM(a[i], a[j]) = HCF(a[i], a[j]). 
Note: The pair (i, j) and (j, i) are considered same and i should not be equal to j.
Examples
 

Input : a[] = {3, 4, 3, 4, 5}
Output : 2
Pairs are (3, 3) and (4, 4)

Input  : a[] = {1, 1, 1}
Output : 3

 

Naive approach: Generate all possible pairs and count pairs with equal HCF and LCM. 
 

C++




// Naive C++ program to count number of pairs
// such that their hcf and lcm are equal
#include <bits/stdc++.h>
using namespace std;
 
// Function to return HCF of two numbers
int gcd(int a, int b)
{
    if (a == 0)
        return b;
    return gcd(b % a, a);
}
 
// Function to return LCM of two numbers
int lcm(int a, int b)
{
    return (a * b) / gcd(a, b);
}
 
// Returns the number of valid pairs
int countPairs(int arr[], int n)
{
    int ans = 0; // initializing answer
 
    // Traversing the array. For each array
    // element, checking if it
    // follow the condition
    for (int i = 0; i < n; i++)
        for (int j = i + 1; j < n; j++)
            if (lcm(arr[i], arr[j]) == gcd(arr[i], arr[j]))
                ans++;
    return ans;
}
 
// Driver function
int main()
{
    int arr[] = { 1, 1, 1 };
    int n = sizeof(arr) / sizeof(arr[0]);
    cout << countPairs(arr, n);
    return 0;
}


Java




// Naive Java program to count number of pairs
// such that their hcf and lcm are equal
import java.util.*;
 
class GFG{
  
// Function to return HCF of two numbers
static int gcd(int a, int b)
{
    if (a == 0)
        return b;
    return gcd(b % a, a);
}
  
// Function to return LCM of two numbers
static int lcm(int a, int b)
{
    return (a * b) / gcd(a, b);
}
  
// Returns the number of valid pairs
static int countPairs(int arr[], int n)
{
    int ans = 0; // initializing answer
  
    // Traversing the array. For each array
    // element, checking if it
    // follow the condition
    for (int i = 0; i < n; i++)
        for (int j = i + 1; j < n; j++)
            if (lcm(arr[i], arr[j]) == gcd(arr[i], arr[j]))
                ans++;
    return ans;
}
  
// Driver function
public static void main(String[] args)
{
    int arr[] = { 1, 1, 1 };
    int n = arr.length;
    System.out.print(countPairs(arr, n));
}
}
 
// This code is contributed by Rajput-Ji


Python3




# Naive Python program to count number of pairs
# such that their hcf and lcm are equal
 
# Function to return HCF of two numbers
def gcd(a, b):
    if (a == 0):
        return b;
    return gcd(b % a, a);
 
# Function to return LCM of two numbers
def lcm(a, b):
    return (a * b) / gcd(a, b);
 
# Returns the number of valid pairs
def countPairs(arr, n):
    ans = 0; # initializing answer
 
    # Traversing the array. For each array
    # element, checking if it
    # follow the condition
    for i in range(n):
        for j in range(i+1,n):
            if (lcm(arr[i], arr[j]) == gcd(arr[i], arr[j])):
                ans+=1;
    return ans;
 
# Driver function
if __name__ == '__main__':
    arr = [ 1, 1, 1 ];
    n = len(arr);
    print(countPairs(arr, n));
 
# This code is contributed by 29AjayKumar


C#




// Naive C# program to count number of pairs
// such that their hcf and lcm are equal
using System;
 
class GFG{
   
// Function to return HCF of two numbers
static int gcd(int a, int b)
{
    if (a == 0)
        return b;
    return gcd(b % a, a);
}
   
// Function to return LCM of two numbers
static int lcm(int a, int b)
{
    return (a * b) / gcd(a, b);
}
   
// Returns the number of valid pairs
static int countPairs(int []arr, int n)
{
    int ans = 0; // initializing answer
   
    // Traversing the array. For each array
    // element, checking if it
    // follow the condition
    for (int i = 0; i < n; i++)
        for (int j = i + 1; j < n; j++)
            if (lcm(arr[i], arr[j]) == gcd(arr[i], arr[j]))
                ans++;
    return ans;
}
   
// Driver function
public static void Main(String[] args)
{
    int []arr = { 1, 1, 1 };
    int n = arr.Length;
    Console.Write(countPairs(arr, n));
}
}
 
// This code is contributed by 29AjayKumar


Javascript




<script>
 
 
// Naive Javascript program to count number of pairs
// such that their hcf and lcm are equal
 
// Function to return HCF of two numbers
function gcd(a, b)
{
    if (a == 0)
        return b;
    return gcd(b % a, a);
}
 
// Function to return LCM of two numbers
function lcm(a, b)
{
    return (a * b) / gcd(a, b);
}
 
// Returns the number of valid pairs
function countPairs(arr, n)
{
    var ans = 0; // initializing answer
 
    // Traversing the array. For each array
    // element, checking if it
    // follow the condition
    for (var i = 0; i < n; i++)
        for (var j = i + 1; j < n; j++)
            if (lcm(arr[i], arr[j]) == gcd(arr[i], arr[j]))
                ans++;
    return ans;
}
 
// Driver function
var arr = [ 1, 1, 1 ];
var n = arr.length;
document.write(countPairs(arr, n));
 
// This code is contributed by rutvik_56.
</script>


Output: 

3

 

Time Complexity: O(n2 * log(max(a, b)))

Auxiliary Space: O(log(max(a, b)))

Efficient Approach: If we observe carefully, it can be proved that the HCF and LCM of two numbers can be equal only when the numbers are also equal.
Proof
 

Let,
HCF(a[i], a[j]) = LCM(a[i], a[j]) = K

Since HCF(a[i], a[j]) = k,
a[i] = k*n1, a[j] = k*n2, for some natural numbers n1, n2

We know that,
HCF × LCM = Product of the two numbers

Therefore,
k*k = k*n1 × k*n2
or, n1*n2 = 1

Implies, n1 = n2 = 1, since n1, n2 are natural numbers.

Therefore,
a[i] = k*n1 = k, a[j] = k*n2 = k
i.e. the numbers must be equal.

So we have to count pairs with same elements in the pair.
It is observed that only the pairs of the form (arr[i], arr[j]) where arr[i] = arr[j] will satisfy the given condition. So, the problem now gets reduced to finding the number of pairs (arr[i], arr[j]) such that arr[i] = arr[j].
Below is the implementation of the above approach:
 

C++




// C++ program to count number of pairs
// such that their hcf and lcm are equal
#include <bits/stdc++.h>
using namespace std;
 
// Function to count number of pairs
// such that their hcf and lcm are equal
int countPairs(int a[], int n)
{
    // Store frequencies of array elements
    unordered_map<int, int> frequency;
    for (int i = 0; i < n; i++) {
        frequency[a[i]]++;
    }
 
    int count = 0;
 
    // Count of pairs (arr[i], arr[j])
    // where arr[i] = arr[j]
    for (auto x : frequency) {
        int f = x.second;
        count += f * (f - 1) / 2;
    }
 
    // Count of pairs (arr[i], arr[j]) where
    // arr[i] = arr[j],
    return count;
}
 
// Driver function
int main()
{
    int arr[] = { 1, 1, 1 };
    int n = sizeof(arr) / sizeof(arr[0]);
    cout << countPairs(arr, n);
    return 0;
}


Java




// Java program to count number of pairs
// such that their hcf and lcm are equal
 
import java.util.*;
 
class GFG{
  
// Function to count number of pairs
// such that their hcf and lcm are equal
static int countPairs(int arr[], int n)
{
    // Store frequencies of array elements
    HashMap<Integer,Integer> frequency =
            new HashMap<Integer,Integer>();
    for (int i = 0; i < n; i++) {
        if(frequency.containsKey(arr[i])){
            frequency.put(arr[i], frequency.get(arr[i])+1);
        }else{
            frequency.put(arr[i], 1);
    }
    }
  
    int count = 0;
  
    // Count of pairs (arr[i], arr[j])
    // where arr[i] = arr[j]
    for (Map.Entry<Integer,Integer> x : frequency.entrySet()) {
        int f = x.getValue();
        count += f * (f - 1) / 2;
    }
  
    // Count of pairs (arr[i], arr[j]) where
    // arr[i] = arr[j],
    return count;
}
  
// Driver function
public static void main(String[] args)
{
    int arr[] = { 1, 1, 1 };
    int n = arr.length;
    System.out.print(countPairs(arr, n));
}
}
 
// This code contributed by sapnasingh4991


C#




// C# program to count number of pairs
// such that their hcf and lcm are equal
using System;
using System.Collections.Generic;
 
class GFG{
 
// Function to count number of pairs
// such that their hcf and lcm are equal
static int countPairs(int []a, int n)
{
    // Store frequencies of array elements
    Dictionary<int, int> frequency = new Dictionary<int,int>();
        for (int i = 0; i < n; i++)
        {
            if (frequency.ContainsKey(a[i])) 
            {
                var val = frequency[a[i]];
                frequency.Remove(a[i]);
                frequency.Add(a[i], val + 1); 
            
            else
            {
                frequency.Add(a[i], 1);
            }
        }
          
    int count = 0;
 
    // Count of pairs (arr[i], arr[j])
    // where arr[i] = arr[j]
    foreach(KeyValuePair<int, int> entry in frequency) {
        int f = entry.Value;
        count += f * (f - 1) / 2;
    }
 
    // Count of pairs (arr[i], arr[j]) where
    // arr[i] = arr[j],
    return count;
}
 
// Driver function
public static void Main(String[] args)
{
    int []arr = { 1, 1, 1 };
    int n = arr.Length;
    Console.Write(countPairs(arr, n));
}
}
 
// This code is contributed by shivanisinghss2110


Python3




# Python 3 program to count number of pairs
# such that their hcf and lcm are equal
from collections import defaultdict
  
# Function to count number of pairs
# such that their hcf and lcm are equal
def countPairs(a, n):
 
    # Store frequencies of array elements
    frequency = defaultdict(int)
    for i in range(n) :
        frequency[a[i]] += 1
     
  
    count = 0
  
    # Count of pairs (arr[i], arr[j])
    # where arr[i] = arr[j]
    for x in frequency.keys():
        f = frequency[x]
        count += f * (f - 1) // 2
  
    # Count of pairs (arr[i], arr[j]) where
    # arr[i] = arr[j],
    return count
  
# Driver function
if __name__ == "__main__":
     
    arr = [ 1, 1, 1 ]
    n = len(arr)
    print(countPairs(arr, n))
 
# This code is contributed by chitranayal


Javascript




<script>
 
// JavaScript program to count number of pairs
// such that their hcf and lcm are equal
 
// Function to count number of pairs
// such that their hcf and lcm are equal
function countPairs(arr,n)
{
    // Store frequencies of array elements
    let frequency = new Map();
    for (let i = 0; i < n; i++) {
        if(frequency.has(arr[i])){
            frequency.set(arr[i], frequency.get(arr[i])+1);
        }else{
            frequency.set(arr[i], 1);
    }
    }
   
    let count = 0;
   
    // Count of pairs (arr[i], arr[j])
    // where arr[i] = arr[j]
    for (let [key, value] of frequency.entries()) {
        let f = value;
        count += f * (f - 1) / 2;
    }
   
    // Count of pairs (arr[i], arr[j]) where
    // arr[i] = arr[j],
    return count;
}
 
// Driver function
let arr=[1, 1, 1 ];
let n = arr.length;
document.write(countPairs(arr, n));
 
 
 
// This code is contributed by avanitrachhadiya2155
 
</script>


Output: 

3

 

Time Complexity: O(n)

Auxiliary Space: O(n)

Feeling lost in the world of random DSA topics, wasting time without progress? It’s time for a change! Join our DSA course, where we’ll guide you on an exciting journey to master DSA efficiently and on schedule.
Ready to dive in? Explore our Free Demo Content and join our DSA course, trusted by over 100,000 neveropen!

RELATED ARTICLES

Most Popular

Recent Comments