Saturday, November 16, 2024
Google search engine
HomeData Modelling & AINumber of balanced bracket expressions that can be formed from a string

Number of balanced bracket expressions that can be formed from a string

Given a string str comprising of characters (, ), {, }, [, ] and ?. The task is to find the total number of balanced bracket expressions formed when ? can be replaced with any of the bracket characters. 
Here are some examples of balanced bracket expressions: {([])}, {()}[{}] etc. 
And, unbalanced bracket expressions: {[}, {()], {()}[) etc.

Examples: 

Input: str = “(?([?)]?}?” 
Output:
({([()]]}), ()([()]{}) and ([([])]{}) are the only possible balanced expressions that can be generated from the input.

Input: str = “???[???????]????” 
Output: 392202 

Approach: 

  1. If n is odd, then the result will always be 0 as there will be no balanced expression possible.
  2. If n id even, then create a dp array for storing precomputations.
  3. Call a recursive function with the following operations: 
    • If starting index > ending index then you return 1.
    • If dp[start][end] is already computed, return dp[start][end].
    • Run a loop from start + 1 till end incrementing by 2 to find its pair bracket or ‘?’.
    • Then divide the string into two halves to check to proper subsequent bracket expressions from start + 1 till i – 1 and i + 1 till the end by calling the recursive function.
    • If st[start] = ’?’ and st[i] = ’?’ then a total of 3 combinations of bracket pairs can be formed, thus multiplying the result of the recursive function by 3.
  4. Return dp[start][end]

Below is the implementation of the above approach: 

C++




// C++ program to find number of balanced
// bracket expressions possible
#include <bits/stdc++.h>
using namespace std;
typedef long long int lli;
 
// Max string length
const int MAX = 300;
 
// Function to check whether index start
// and end can form a bracket pair or not
int checkFunc(int i, int j, string st)
{
    // Check for brackets ( )
    if (st[i] == '(' && st[j] == ')')
        return 1;
    if (st[i] == '(' && st[j] == '?')
        return 1;
    if (st[i] == '?' && st[j] == ')')
        return 1;
 
    // Check for brackets [ ]
    if (st[i] == '[' && st[j] == ']')
        return 1;
    if (st[i] == '[' && st[j] == '?')
        return 1;
    if (st[i] == '?' && st[j] == ']')
        return 1;
 
    // Check for brackets { }
    if (st[i] == '{' && st[j] == '}')
        return 1;
    if (st[i] == '{' && st[j] == '?')
        return 1;
    if (st[i] == '?' && st[j] == '}')
        return 1;
 
    return 0;
}
 
// Function to find number of
// proper bracket expressions
int countRec(int start, int end, int dp[][MAX],
             string st)
{
    int sum = 0;
 
    // If starting index is greater
    // than ending index
    if (start > end)
        return 1;
 
    // If dp[start][end] has already been computed
    if (dp[start][end] != -1)
        return dp[start][end];
 
    lli i, r = 0;
 
    // Search for the bracket in from next index
    for (i = start + 1; i <= end; i += 2) {
 
        // If bracket pair is formed,
        // add number of combination
        if (checkFunc(start, i, st)) {
 
            sum = sum
                  + countRec(start + 1, i - 1, dp, st)
                        * countRec(i + 1, end, dp, st);
        }
 
        // If ? comes then all three bracket
        // expressions are possible
        else if (st[start] == '?' && st[i] == '?') {
 
            sum = sum
                  + countRec(start + 1, i - 1, dp, st)
                        * countRec(i + 1, end, dp, st)
                        * 3;
        }
    }
 
    // Return answer
    return dp[start][end] = sum;
}
 
int countWays(string st)
{
    int n = st.length();
 
    // If n is odd, string cannot be balanced
    if (n % 2 == 1)
        return 0;
    int dp[MAX][MAX];
    memset(dp, -1, sizeof(dp));
    return countRec(0, n - 1, dp, st);
}
 
// Driving function
int main()
{
    string st = "(?([?)]?}?";
    cout << countWays(st);
    return 0;
}


Java




// Java program to find number of balanced
// bracket expressions possible
 
class GFG {
    // Max string length
    static int MAX = 300;
 
    // Function to check whether index start
    // and end can form a bracket pair or not
    static int checkFunc(int i, int j, String st)
    {
        // Check for brackets ( )
        if (st.charAt(i) == '(' && st.charAt(j) == ')')
            return 1;
        if (st.charAt(i) == '(' && st.charAt(j) == '?')
            return 1;
        if (st.charAt(i) == '?' && st.charAt(j) == ')')
            return 1;
 
        // Check for brackets [ ]
        if (st.charAt(i) == '[' && st.charAt(j) == ']')
            return 1;
        if (st.charAt(i) == '[' && st.charAt(j) == '?')
            return 1;
        if (st.charAt(i) == '?' && st.charAt(j) == ']')
            return 1;
 
        // Check for brackets { }
        if (st.charAt(i) == '{' && st.charAt(j) == '}')
            return 1;
        if (st.charAt(i) == '{' && st.charAt(j) == '?')
            return 1;
        if (st.charAt(i) == '?' && st.charAt(j) == '}')
            return 1;
 
        return 0;
    }
 
    // Function to find number of
    // proper bracket expressions
    static int countRec(int start, int end, int dp[][],
                        String st)
    {
        int sum = 0;
 
        // If starting index is greater
        // than ending index
        if (start > end)
            return 1;
 
        // If dp[start][end] has already been computed
        if (dp[start][end] != -1)
            return dp[start][end];
 
        int i, r = 0;
 
        // Search for the bracket in from next index
        for (i = start + 1; i <= end; i += 2) {
 
            // If bracket pair is formed,
            // add number of combination
            if (checkFunc(start, i, st) == 1) {
 
                sum = sum
                      + countRec(start + 1, i - 1, dp, st)
                            * countRec(i + 1, end, dp, st);
            }
 
            // If ? comes then all three bracket
            // expressions are possible
            else if (st.charAt(start) == '?' && st.charAt(i) == '?') {
 
                sum = sum
                      + countRec(start + 1, i - 1, dp, st)
                            * countRec(i + 1, end, dp, st)
                            * 3;
            }
        }
 
        // Return answer
        return dp[start][end] = sum;
    }
 
    static int countWays(String st)
    {
        int n = st.length();
 
        // If n is odd, string cannot be balanced
        if (n % 2 == 1)
            return 0;
 
        int dp[][] = new int[MAX][MAX];
 
        for (int i = 0; i < MAX; i++)
            for (int j = 0; j < MAX; j++)
                dp[i][j] = -1;
 
        return countRec(0, n - 1, dp, st);
    }
 
    // Driving function
    public static void main(String[] args)
    {
 
        String st = "(?([?)]?}?";
        System.out.println(countWays(st));
    }
}
 
// This code is contributed by ihritik


Python 3




# Python 3 program to find number of balanced
# bracket expressions possible
 
# Max string length
MAX = 300
 
# Function to check whether index start
# and end can form a bracket pair or not
def checkFunc(i, j, st):
 
    # Check for brackets ( )
    if (st[i] == '(' and st[j] == ')'):
        return 1
    if (st[i] == '(' and st[j] == '?'):
        return 1
    if (st[i] == '?' and st[j] == ')'):
        return 1
 
    # Check for brackets [ ]
    if (st[i] == '[' and st[j] == ']'):
        return 1
    if (st[i] == '[' and st[j] == '?'):
        return 1
    if (st[i] == '?' and st[j] == ']'):
        return 1
 
    # Check for brackets { }
    if (st[i] == '{' and st[j] == '}'):
        return 1
    if (st[i] == '{' and st[j] == '?'):
        return 1
    if (st[i] == '?' and st[j] == '}'):
        return 1
 
    return 0
 
# Function to find number of
# proper bracket expressions
def countRec(start, end, dp, st):
 
    sum = 0
 
    # If starting index is greater
    # than ending index
    if (start > end):
        return 1
 
    # If dp[start][end] has already
    # been computed
    if (dp[start][end] != -1):
        return dp[start][end]
 
    r = 0
 
    # Search for the bracket in from next index
    for i in range(start + 1, end + 1, 2):
 
        # If bracket pair is formed,
        # add number of combination
        if (checkFunc(start, i, st)):
 
            sum = (sum + countRec(start + 1, i - 1, dp, st) *
                         countRec(i + 1, end, dp, st))
 
        # If ? comes then all three bracket
        # expressions are possible
        elif (st[start] == '?' and st[i] == '?'):
 
            sum = (sum + countRec(start + 1, i - 1, dp, st) *
                         countRec(i + 1, end, dp, st) * 3)
 
    # Return answer
    dp[start][end] = sum
    return dp[start][end]
 
def countWays( st):
 
    n = len(st)
 
    # If n is odd, string cannot be balanced
    if (n % 2 == 1):
        return 0
    dp = [[-1 for i in range(MAX)]
              for i in range(MAX)]
    return countRec(0, n - 1, dp, st)
 
# Driver Code
if __name__ =="__main__":
     
    st = "(?([?)]?}?"
    print(countWays(st))
 
# This code is contributed by ita_c


C#




// C# program to find number of balanced
// bracket expressions possible
 
using System;
class GFG {
    // Max string length
    static int MAX = 300;
 
    // Function to check whether index start
    // and end can form a bracket pair or not
    static int checkFunc(int i, int j, string st)
    {
        // Check for brackets ( )
        if (st[i] == '(' && st[j] == ')')
            return 1;
        if (st[i] == '(' && st[j] == '?')
            return 1;
        if (st[i] == '?' && st[j] == ')')
            return 1;
 
        // Check for brackets [ ]
        if (st[i] == '[' && st[j] == ']')
            return 1;
        if (st[i] == '[' && st[j] == '?')
            return 1;
        if (st[i] == '?' && st[j] == ']')
            return 1;
 
        // Check for brackets { }
        if (st[i] == '{' && st[j] == '}')
            return 1;
        if (st[i] == '{' && st[j] == '?')
            return 1;
        if (st[i] == '?' && st[j] == '}')
            return 1;
 
        return 0;
    }
 
    // Function to find number of
    // proper bracket expressions
    static int countRec(int start, int end, int[, ] dp,
                        string st)
    {
        int sum = 0;
 
        // If starting index is greater
        // than ending index
        if (start > end)
            return 1;
 
        // If dp[start, end] has already been computed
        if (dp[start, end] != -1)
            return dp[start, end];
 
        int i;
 
        // Search for the bracket in from next index
        for (i = start + 1; i <= end; i += 2) {
 
            // If bracket pair is formed,
            // add number of combination
            if (checkFunc(start, i, st) == 1) {
 
                sum = sum
                      + countRec(start + 1, i - 1, dp, st)
                            * countRec(i + 1, end, dp, st);
            }
 
            // If ? comes then all three bracket
            // expressions are possible
            else if (st[start] == '?' && st[i] == '?') {
 
                sum = sum
                      + countRec(start + 1, i - 1, dp, st)
                            * countRec(i + 1, end, dp, st)
                            * 3;
            }
        }
 
        // Return answer
        return dp[start, end] = sum;
    }
 
    static int countWays(string st)
    {
        int n = st.Length;
 
        // If n is odd, string cannot be balanced
        if (n % 2 == 1)
            return 0;
 
        int[, ] dp = new int[MAX, MAX];
 
        for (int i = 0; i < MAX; i++)
            for (int j = 0; j < MAX; j++)
                dp[i, j] = -1;
 
        return countRec(0, n - 1, dp, st);
    }
 
    // Driving function
    public static void Main()
    {
 
        string st = "(?([?)]?}?";
        Console.WriteLine(countWays(st));
    }
}
 
// This code is contributed by ihritik


Javascript




<script>
// Javascript program to find number of balanced
// bracket expressions possible
     
    // Max string length
    let MAX = 300;
    // Function to check whether index start
    // and end can form a bracket pair or not
    function checkFunc(i,j,st)
    {
        // Check for brackets ( )
        if (st[i] == '(' && st[j] == ')')
            return 1;
        if (st[i] == '(' && st[j] == '?')
            return 1;
        if (st[i] == '?' && st[j] == ')')
            return 1;
   
        // Check for brackets [ ]
        if (st[i] == '[' && st[j] == ']')
            return 1;
        if (st[i] == '[' && st[j] == '?')
            return 1;
        if (st[i] == '?' && st[j] == ']')
            return 1;
   
        // Check for brackets { }
        if (st[i] == '{' && st[j] == '}')
            return 1;
        if (st[i] == '{' && st[j] == '?')
            return 1;
        if (st[i] == '?' && st[j] == '}')
            return 1;
   
        return 0;
    }
     
    // Function to find number of
    // proper bracket expressions
    function countRec(start,end,dp,st)
    {
        let sum = 0;
   
        // If starting index is greater
        // than ending index
        if (start > end)
            return 1;
   
        // If dp[start][end] has already been computed
        if (dp[start][end] != -1)
            return dp[start][end];
   
        let i, r = 0;
   
        // Search for the bracket in from next index
        for (i = start + 1; i <= end; i += 2) {
   
            // If bracket pair is formed,
            // add number of combination
            if (checkFunc(start, i, st) == 1) {
   
                sum = sum
                      + countRec(start + 1, i - 1, dp, st)
                            * countRec(i + 1, end, dp, st);
            }
   
            // If ? comes then all three bracket
            // expressions are possible
            else if (st[start] == '?' && st[i] == '?') {
   
                sum = sum
                      + countRec(start + 1, i - 1, dp, st)
                            * countRec(i + 1, end, dp, st)
                            * 3;
            }
        }
   
        // Return answer
        return dp[start][end] = sum;
    }
     
    function countWays(st)
    {
        let n = st.length;
   
        // If n is odd, string cannot be balanced
        if (n % 2 == 1)
            return 0;
   
        let dp = new Array(MAX);
   
        for (let i = 0; i < MAX; i++)
        {   
            dp[i]=new Array(MAX);
            for (let j = 0; j < MAX; j++)
                dp[i][j] = -1;
          }
        return countRec(0, n - 1, dp, st);
    }
     
    // Driving function
    let st = "(?([?)]?}?";
    document.write(countWays(st));
     
     
// This code is contributed by rag2127
</script>


Output: 

3

 

Time Complexity: O(N^3)
Auxiliary Space: O(MAX^2)

Feeling lost in the world of random DSA topics, wasting time without progress? It’s time for a change! Join our DSA course, where we’ll guide you on an exciting journey to master DSA efficiently and on schedule.
Ready to dive in? Explore our Free Demo Content and join our DSA course, trusted by over 100,000 neveropen!

RELATED ARTICLES

Most Popular

Recent Comments