Given a large number n, find if the number is divisible by 29.
Examples :
Input : 363927598 Output : No Input : 292929002929 Output : Yes
A quick solution to check if a number is divisible by 29 or not is to add 3 times of last digit to rest number and repeat this process until number comes 2 digit. The given number is divisible by 29 if the obtained two digit number is divisible by 29.
Number is 348,
Three times of last digit + Rest of the number = 8*3 + 34 = 58
Since 58 is divisible by 29, 348 is also divisible by 29.
C++
// CPP program to demonstrate above method // to check divisibility by 29. #include <iostream> using namespace std; // Returns true if n is divisible by 29 // else returns false. bool isDivisible( long long int n) { // add the lastdigit*3 to renaming // number until number comes only // 2 digit while (n / 100) { int last_digit = n % 10; n /= 10; n += last_digit * 3; } // return true if number is // divisible by 29 another return (n % 29 == 0); } // Driver Code int main() { long long int n = 348; if (isDivisible(n)) cout << "Yes" << endl; else cout << "No" << endl; return 0; } |
Java
// Java program to demonstrate above method // to check divisibility by 29. import java.io.*; class GFG { // Returns true if n is divisible by 29 // else returns false. static boolean isDivisible( long n) { // add the lastdigit*3 to renaming // number until number comes only // 2 digit while (n / 100 > 0 ) { int last_digit = ( int )n % 10 ; n /= 10 ; n += last_digit * 3 ; } // return true if number is // divisible by 29 another return (n % 29 == 0 ); } // Driver code public static void main(String[] args) { long n = 348 ; if (isDivisible(n)) System.out.println( "Yes" ); else System.out.println( "No" ); } } // This code is contributed by vt_m. |
Python3
# Python3 program to demonstrate above # method to check divisibility by 29. # Returns true if n is divisible # by 29 else returns false. def isDivisible(n): # add the lastdigit*3 to renaming # number until number comes only # 2 digit while ( int (n / 100 )) : last_digit = int (n % 10 ) n = int (n / 10 ) n + = last_digit * 3 # return true if number is # divisible by 29 another return (n % 29 = = 0 ) # Driver Code n = 348 if (isDivisible(n) ! = 0 ): print ( "Yes" ) else : print ( "No" ) # This code is contributed by Smitha Dinesh Semwal. |
C#
// C# program to demonstrate above method // to check divisibility by 29. using System; class GFG { // Returns true if n is divisible by 29 // else returns false. static bool isDivisible( long n) { // add the lastdigit*3 to renaming // number until number comes only // 2 digit while (n / 100 > 0) { int last_digit = ( int )n % 10; n /= 10; n += last_digit * 3; } // return true if number is // divisible by 29 another return (n % 29 == 0); } // Driver code public static void Main() { long n = 348; if (isDivisible(n)) Console.Write( "Yes" ); else Console.Write( "No" ); } } // This code is contributed by nitin mittal |
PHP
<?php // PHP program to demonstrate // above method to check // divisibility by 29. // Returns true if n is // divisible by 29 // else returns false. function isDivisible( $n ) { // add the lastdigit*3 to // remaining number until // number becomes of only // 2 digit while ( intval ( $n / 100)) { $last_digit = $n % 10; $n = intval ( $n / 10); $n += $last_digit * 3; } // return true if number is // divisible by 29 another return ( $n % 29 == 0); } // Driver Code $n = 348; if (isDivisible( $n )) echo "Yes" ; else echo "No" ; // This code is contributed by Sam007 ?> |
Javascript
<script> // Javascript program to demonstrate // above method to check // divisibility by 29. // Returns true if n is // divisible by 29 // else returns false. function isDivisible(n) { // add the lastdigit*3 to // remaining number until // number becomes of only // 2 digit while (parseInt(n / 100)) { let last_digit = n % 10; n = parseInt(n / 10); n += last_digit * 3; } // return true if number is // divisible by 29 another return (n % 29 == 0); } // Driver Code let n = 348; if (isDivisible(n)) document.write( "Yes" ); else document.write( "No" ) ; // This code is contributed by _saurabh_jaiswal </script> |
Yes
Time Complexity: O(n) where n is given number.
Space Complexity: O(1) as we are not using any extra space.
Ready to dive in? Explore our Free Demo Content and join our DSA course, trusted by over 100,000 neveropen!