Saturday, November 16, 2024
Google search engine
HomeData Modelling & AInth Rational number in Calkin-Wilf sequence

nth Rational number in Calkin-Wilf sequence

What is Calkin Wilf Sequence? 
A Calkin-Wilf tree (or sequence) is a special binary tree which is obtained by starting with the fraction 1/1 and adding a/(a+b) and (a+b)/b iteratively below each fraction a/b. This tree generates every rational number. Writing out the terms in a sequence gives 1/1, 1/2, 2/1, 1/3, 3/2, 2/3, 3/1, 1/4, 4/3, 3/5, 5/2, 2/5, 5/3, 3/4, 4/1, …The sequence has the property that each denominator is the next numerator.

The image above is the Calkin-Wilf Tree where all the rational numbers are listed. The children of a node a/b is calculated as a/(a+b) and (a+b)/b.
The task is to find the nth rational number in breadth first traversal of this tree. 

Examples: 

Input : 13
Output : [5, 3]

Input : 5
Output : [3, 2]

Explanation: 

This tree is a Perfect Binary Search tree and we need floor(log(n)) steps to compute nth rational number. The concept is similar to searching in a binary search tree. Given n we keep dividing it by 2 until we get 0. We return fraction at each stage in the following manner:

    if n%2 == 0
        update frac[1]+=frac[0]
    else
        update frac[0]+=frac[1]

Below is the program to find the nth number in Calkin Wilf sequence:

C++




// C++ program to find the
// nth number in Calkin
// Wilf sequence:
# include<bits/stdc++.h>
using namespace std;
 
int frac[] = {0, 1};
 
// returns 1x2 int array 
// which contains the nth
// rational number
int nthRational(int n)
{
    if (n > 0)
        nthRational(n / 2);
 
    // ~n&1 is equivalent to
    // !n%2?1:0 and n&1 is
    // equivalent to n%2
    frac[~n & 1] += frac[n & 1];
}
 
// Driver Code
int main()
{
    int n = 13; // testing for n=13
     
    // converting array
    // to string format
    nthRational(n);
    cout << "[" << frac[0] << ","
         << frac[1] << "]" << endl;
    return 0;
}
 
// This code is contributed
// by Harshit Saini


Java




// Java program to find the nth number
// in Calkin Wilf sequence:
import java.util.*;
 
public class GFG {
    static int[] frac = { 0, 1 };
 
    public static void main(String args[])
    {
        int n = 13; // testing for n=13
 
        // converting array to string format
        System.out.println(Arrays.toString(nthRational(n)));
    }
 
    // returns 1x2 int array which
    // contains the nth rational number
    static int[] nthRational(int n)
    {
        if (n > 0)
            nthRational(n / 2);
 
        // ~n&1 is equivalent to !n%2?1:0
        // and n&1 is equivalent to n%2
        frac[~n & 1] += frac[n & 1];
         
 
        return frac;
    }
}


Python3




# Python program to find
# the nth number in Calkin
# Wilf sequence:
frac = [0, 1]
 
# returns 1x2 int array
# which contains the nth
# rational number
def nthRational(n):
    if n > 0:
        nthRational(int(n / 2))
     
    # ~n&1 is equivalent to
    # !n%2?1:0 and n&1 is
    # equivalent to n%2
    frac[~n & 1] += frac[n & 1]
     
    return frac
 
# Driver code
if __name__ == "__main__":
     
    n = 13 # testing for n=13
     
    # converting array
    # to string format
    print(nthRational(n))
     
# This code is contributed
# by Harshit Saini


C#




// C# program to find the nth number
// in Calkin Wilf sequence:
using System;
 
class GFG
{
    static int[] frac = { 0, 1 };
 
    public static void Main(String []args)
    {
        int n = 13; // testing for n=13
 
        // converting array to string format
        Console.WriteLine("[" + String.Join(",",
                                nthRational(n)) + "]");
    }
 
    // returns 1x2 int array which
    // contains the nth rational number
    static int[] nthRational(int n)
    {
        if (n > 0)
            nthRational(n / 2);
 
        // ~n&1 is equivalent to !n%2?1:0
        // and n&1 is equivalent to n%2
        frac[~n & 1] += frac[n & 1];
         
        return frac;
    }
}
 
// This code is contributed by 29AjayKumar


Javascript




<script>
// Javascript program to find the nth number
// in Calkin Wilf sequence:
let frac = [0, 1];
 
let n = 13; // testing for n=13
 
// converting array to string format
document.write(`[${nthRational(n)}]`)
 
// returns 1x2 int array which
// contains the nth rational number
function nthRational(n) {
    if (n > 0)
        nthRational(Math.floor(n / 2));
 
    // ~n&1 is equivalent to !n%2?1:0
    // and n&1 is equivalent to n%2
    frac[~n & 1] += frac[n & 1];
    return frac;
}
 
// This code is contributed by _saurabh_jaiswal
 
</script>


Output

[5,3]

Time complexity : O(log(n))

Auxiliary Space : O(1)

Explanation: 
For n = 13, 
 

Feeling lost in the world of random DSA topics, wasting time without progress? It’s time for a change! Join our DSA course, where we’ll guide you on an exciting journey to master DSA efficiently and on schedule.
Ready to dive in? Explore our Free Demo Content and join our DSA course, trusted by over 100,000 neveropen!

RELATED ARTICLES

Most Popular

Recent Comments