Sunday, November 17, 2024
Google search engine
HomeData Modelling & AIMünchhausen Number

Münchhausen Number

Given a number N, output all Munchhausen numbers from 1 to n.
Introduction : A Münchhausen number is a number equal to the sum of its digits raised to each digit’s power. It is similar to that of Narcissistic Number.

For example: 
3435 = 33 + 44 + 33 + 55
One can also be considered as Münchhausen Number because when 1 raised to the power 1 is 1 itself.
Since, the number 3435 can be expressed as sum of each digits of the number when each digits of the numbers are raised to power equivalent to the digits itself i.e., ((3 raised to the power 3) + (4 raised to the power 4) + (3 raised to the power 3) + (5 raised to the power 5)) will give output to the same number i.e. 3435, then the number can be called as Münchhausen Number.

Example: 

Input : 500
Output : 1
One is the only Münchhausen Number smaller
than or equal to 500.

Input : 5000
Output : 1  3435
1 and 3435 are the only Münchhausen Numbers smaller
than or equal to 5000.

We precompute i raised to power i for every possible digit i where i varies from 0 to 9. After precomputing these values, we traverse through all digits of every number smaller than equal to n and compute sum of digit raised to power digit.

C++




// C++ code for Münchhausen Number
#include <bits/stdc++.h>
using namespace std;
 
// pwr[i] is going to store i raised to
// power i.
unsigned pwr[10];
 
// Function to check out whether
// the number is Münchhausen
// Number or not
bool isMunchhausen(unsigned n) {
    unsigned sum = 0;
    int temp = n;
 
    while (temp) {
        sum += pwr[(temp % 10)];
        temp /= 10;
    }
 
    return (sum == n);
}
 
void printMunchhausenNumbers(int n)
{
    // Precompute i raised to power i for every i
    for (int i = 0; i < 10; i++ )
        pwr[i] = (unsigned)pow( (float)i, (float)i );
     
    // The input here is fixed i.e. it will
    // check up to n
    for (unsigned i = 1; i <= n; i++)
 
        // check the integer for Münchhausen Number,
        // if yes then print out the number
        if (isMunchhausen(i))
            cout << i << "\n";
}
 
// Driver Code
int main() {
    int n = 10000;
    printMunchhausenNumbers(n);
    return 0;
}


Java




// Java code for Munchhausen Number
 
import java.io.*;
import java.util.*;
 
class GFG {
// pwr[i] is going to store i raised to
// power i.
static long[] pwr;
  
// Function to check out whether
// the number is Munchhausen
// Number or not
static Boolean isMunchhausen(int n) {
    long sum = 0l;
    int temp = n;
  
    while (temp>0) {
        int index= temp%10;
        sum =sum + pwr[index];
        temp /= 10;
    }
  
    return (sum == n);
}
  
static void printMunchhausenNumbers(int n)
{
    pwr= new long[10];
 
    // Precompute i raised to
    // power i for every i
    for (int i = 0; i < 10; i++ )
        pwr[i] = (long)Math.pow( (float)i, (float)i );
      
    // The input here is fixed i.e. it will
    // check up to n
    for (int i = 1; i <= n; i++)
  
        // check the integer for Munchhausen Number,
        // if yes then print out the number
        if (isMunchhausen(i)==true)
            System.out.println(i );
}
    public static void main (String[] args) {
    int n = 10000;
    printMunchhausenNumbers(n);
     }
}
// This code is contributed by Gitanjali.


Python3




# Python 3 code for
# Münchhausen Number
import math
 
# pwr[i] is going to
# store i raised to
# power i.
pwr = [0] * 10
 
# Function to check out
# whether the number is
# Münchhausen Number or
# not
def isMunchhausen(n) :
 
    sm = 0
    temp = n
 
    while (temp) :
        sm= sm + pwr[(temp % 10)]
        temp = temp // 10
     
    return (sm == n)
 
def printMunchhausenNumbers(n) :
 
    # Precompute i raised to
    # power i for every i
    for i in range(0, 10) :
        pwr[i] = math.pow((float)(i), (float)(i))
     
    # The input here is fixed
    # i.e. it will check up to n
    for i in range(1,n+1) :
         
        # check the integer for
        # Münchhausen Number, if
        # yes then print out the
        # number
        if (isMunchhausen(i)) :
            print( i )
 
 
# Driver Code
n = 10000
printMunchhausenNumbers(n)
 
# This code is contributed by Nikita Tiwari.


C#




// C# code for Munchhausen Number
using System;
 
class GFG {
 
    // pwr[i] is going to store i
    // raised to power i.
    static long[] pwr;
 
    // Function to check out whether
    // the number is Munchhausen
    // Number or not
    static bool isMunchhausen(int n)
    {
        long sum = 0;
        int temp = n;
 
        while (temp > 0) {
            int index = temp % 10;
            sum = sum + pwr[index];
            temp /= 10;
        }
 
        return (sum == n);
    }
 
    static void printMunchhausenNumbers(int n)
    {
        pwr = new long[10];
 
        // Precompute i raised to
        // power i for every i
        for (int i = 0; i < 10; i++)
            pwr[i] = (long)Math.Pow((float)i, (float)i);
 
        // The input here is fixed i.e.
        // it will check up to n
        for (int i = 1; i <= n; i++)
 
            // check the integer for Munchhausen Number,
            // if yes then print out the number
            if (isMunchhausen(i) == true)
                Console.WriteLine(i);
    }
     
    // Driver Code
    public static void Main()
    {
        int n = 10000;
        printMunchhausenNumbers(n);
    }
}
 
// This code is contributed by vt_m.


PHP




<?php
// PHP code for Münchhausen Number
 
// pwr[i] is going to store i raised
// to power i.
$pwr = array_fill(0, 10, 0);
 
// Function to check out whether the
// number is Münchhausen Number or not
function isMunchhausen($n)
{
    global $pwr;
    $sm = 0;
    $temp = $n;
 
    while ($temp)
    {
        $sm= $sm + $pwr[($temp % 10)];
        $temp = (int)($temp / 10);
    }
    return ($sm == $n);
}
 
function printMunchhausenNumbers($n)
{
    global $pwr;
     
    // Precompute i raised to power
    // i for every i
    for ($i = 0; $i < 10; $i++)
        $pwr[$i] = pow((float)($i), (float)($i));
     
    // The input here is fixed i.e. it
    // will check up to n
    for ($i = 1; $i < $n + 1; $i++)
         
        // check the integer for Münchhausen
        // Number, if yes then print out the
        // number
        if (isMunchhausen($i))
            print($i . "\n");
}
 
// Driver Code
$n = 10000;
printMunchhausenNumbers($n);
 
// This code is contributed by mits
?>


Javascript




<script>
 
// Javascript code for Munchhausen Number
// pwr[i] is going to store i raised to
 
// power i.
var pwr;
  
// Function to check out whether
// the number is Munchhausen
// Number or not
function isMunchhausen(n)
{
    var sum = 0;
    var temp = n;
  
    while (temp > 0)
    {
        var index= temp % 10;
        sum =sum + pwr[index];
        temp = parseInt(temp / 10);
    }
    return (sum == n);
}
  
function printMunchhausenNumbers(n)
{
    pwr = Array.from({length: 10}, (_, i) => 0);
 
    // Precompute i raised to
    // power i for every i
    for(var i = 0; i < 10; i++)
        pwr[i] = Math.pow(i, i);
      
    // The input here is fixed i.e. it will
    // check up to n
    for(var i = 1; i <= n; i++)
  
        // check the integer for Munchhausen Number,
        // if yes then print out the number
        if (isMunchhausen(i) == true)
            document.write(i + "<br>");
}
 
// Driver code
var n = 10000;
 
printMunchhausenNumbers(n);
 
// This code is contributed by Princi Singh
 
</script>


Output: 

1
3435

Time complexity: O(n logn) n for outer for loop and log n for  while loop in function isMunchhausen

Auxiliary space: O(1) because it is using constant space for array pow

Note : If the definition 0^0 = 0 is adopted, then there are exactly four Münchhausen numbers: 0, 1, 3435, and 438579088 [Source : MathWorld]
 

Feeling lost in the world of random DSA topics, wasting time without progress? It’s time for a change! Join our DSA course, where we’ll guide you on an exciting journey to master DSA efficiently and on schedule.
Ready to dive in? Explore our Free Demo Content and join our DSA course, trusted by over 100,000 neveropen!

RELATED ARTICLES

Most Popular

Recent Comments