Tuesday, November 26, 2024
Google search engine
HomeData Modelling & AIMinimum possible value of max(A, B) such that LCM(A, B) = C

Minimum possible value of max(A, B) such that LCM(A, B) = C

Given an integer C, the task is to find the minimum possible value of max(A, B) such that LCM(A, B) = C.
Examples: 
 

Input: C = 6 
Output:
max(1, 6) = 6 
max(2, 3) = 3 
and min(6, 3) = 3
Input: C = 9 
Output:
 

 

Approach: An approach to solve this problem is to find all the factors of the given number using the approach discussed in this article and then find the pair (A, B) that satisfies the given conditions and take the overall minimum of the maximum of these pairs.
Below is the implementation of the above approach: 
 

C++




// C++ implementation of the approach
#include <bits/stdc++.h>
using namespace std;
 
// Function to return the LCM of a and b
int lcm(int a, int b)
{
    return (a / __gcd(a, b) * b);
}
 
// Function to return the minimized value
int getMinValue(int c)
{
    int ans = INT_MAX;
 
    // To find the factors
    for (int i = 1; i <= sqrt(c); i++) {
 
        // To check if i is a factor of c and
        // the minimum possible number
        // satisfying the given conditions
        if (c % i == 0 && lcm(i, c / i) == c) {
 
            // Update the answer
            ans = min(ans, max(i, c / i));
        }
    }
    return ans;
}
 
// Driver code
int main()
{
    int c = 6;
 
    cout << getMinValue(c);
 
    return 0;
}


Java




// Java implementation of the approach
class Solution
{
    // Recursive function to return gcd of a and b
    static int __gcd(int a, int b)
    {
        // Everything divides 0
        if (a == 0)
        return b;
        if (b == 0)
        return a;
         
        // base case
        if (a == b)
            return a;
         
        // a is greater
        if (a > b)
            return __gcd(a - b, b);
        return __gcd(a, b - a);
    }
     
    // Function to return the LCM of a and b
    static int lcm(int a, int b)
    {
        return (a / __gcd(a, b) * b);
    }
 
    // Function to return the minimized value
    static int getMinValue(int c)
    {
        int ans = Integer.MAX_VALUE;
 
        // To find the factors
        for (int i = 1; i <= Math.sqrt(c); i++)
        {
 
            // To check if i is a factor of c and
            // the minimum possible number
            // satisfying the given conditions
            if (c % i == 0 && lcm(i, c / i) == c)
            {
 
                // Update the answer
                ans = Math.min(ans, Math.max(i, c / i));
            }
        }
        return ans;
    }
 
    // Driver code
    public static void main(String args[])
    {
        int c = 6;
 
        System.out.println(getMinValue(c));
    }
}
 
// This code is contributed by Arnab Kundu


Python3




# Python implementation of the approach
import sys
 
# Recursive function to return gcd of a and b
def __gcd(a, b):
     
    # Everything divides 0
    if (a == 0):
        return b;
    if (b == 0):
        return a;
 
    # base case
    if (a == b):
        return a;
 
    # a is greater
    if (a > b):
        return __gcd(a - b, b);
    return __gcd(a, b - a);
 
# Function to return the LCM of a and b
def lcm(a, b):
    return (a / __gcd(a, b) * b);
 
# Function to return the minimized value
def getMinValue(c):
    ans = sys.maxsize;
 
    # To find the factors
    for i in range(1, int(pow(c, 1/2)) + 1):
 
        # To check if i is a factor of c and
        # the minimum possible number
        # satisfying the given conditions
        if (c % i == 0 and lcm(i, c / i) == c):
 
            # Update the answer
            ans = min(ans, max(i, c / i));
    return int(ans);
 
# Driver code
if __name__ == '__main__':
    c = 6;
 
    print(getMinValue(c));
     
# This code is contributed by 29AjayKumar


C#




// C# implementation of the approach
using System;
 
class GFG
{
    // Recursive function to return gcd of a and b
    static int __gcd(int a, int b)
    {
        // Everything divides 0
        if (a == 0)
        return b;
        if (b == 0)
        return a;
         
        // base case
        if (a == b)
            return a;
         
        // a is greater
        if (a > b)
            return __gcd(a - b, b);
        return __gcd(a, b - a);
    }
     
    // Function to return the LCM of a and b
    static int lcm(int a, int b)
    {
        return (a / __gcd(a, b) * b);
    }
 
    // Function to return the minimized value
    static int getMinValue(int c)
    {
        int ans = int.MaxValue;
 
        // To find the factors
        for (int i = 1; i <= Math.Sqrt(c); i++)
        {
 
            // To check if i is a factor of c and
            // the minimum possible number
            // satisfying the given conditions
            if (c % i == 0 && lcm(i, c / i) == c)
            {
 
                // Update the answer
                ans = Math.Min(ans, Math.Max(i, c / i));
            }
        }
        return ans;
    }
 
    // Driver code
    public static void Main()
    {
        int c = 6;
 
        Console.WriteLine(getMinValue(c));
    }
}
 
// This code is contributed by AnkitRai01


Javascript




<script>
 
// javascript implementation of the approach
 
// Recursive function to return gcd of a and b
function __gcd(a , b)
{
    // Everything divides 0
    if (a == 0)
    return b;
    if (b == 0)
    return a;
     
    // base case
    if (a == b)
        return a;
     
    // a is greater
    if (a > b)
        return __gcd(a - b, b);
    return __gcd(a, b - a);
}
 
// Function to return the LCM of a and b
function lcm(a , b)
{
    return (a / __gcd(a, b) * b);
}
 
// Function to return the minimized value
function getMinValue(c)
{
    var ans = Number.MAX_VALUE;
 
    // To find the factors
    for (i = 1; i <= Math.sqrt(c); i++)
    {
 
        // To check if i is a factor of c and
        // the minimum possible number
        // satisfying the given conditions
        if (c % i == 0 && lcm(i, c / i) == c)
        {
 
            // Update the answer
            ans = Math.min(ans, Math.max(i, c / i));
        }
    }
    return ans;
}
 
// Driver code
 
var c = 6;
 
document.write(getMinValue(c));
 
// This code contributed by shikhasingrajput
 
</script>


Output: 

3

 

Feeling lost in the world of random DSA topics, wasting time without progress? It’s time for a change! Join our DSA course, where we’ll guide you on an exciting journey to master DSA efficiently and on schedule.
Ready to dive in? Explore our Free Demo Content and join our DSA course, trusted by over 100,000 neveropen!

RELATED ARTICLES

Most Popular

Recent Comments