Tuesday, November 19, 2024
Google search engine
HomeData Modelling & AIMinimum number of additions to make the string balanced

Minimum number of additions to make the string balanced

Given a string str of lowercase characters, the task is to find the minimum number of characters that need to add to the string in order to make it balanced. A string is said to be balanced if and only if the number of occurrences of each of the characters is equal.

Examples: 

Input: str = “neveropen” 
Output: 15 
Add 2 ‘g’, 2 ‘k’, 2 ‘s’, 3 ‘f’, 3 ‘o’ and 3 ‘r’.

Input: str = “abcd” 
Output:
The string is already balanced. 

Approach: In order to minimize the additions required, every character’s frequency must be made equal to the frequency of the element occurring most frequently. So first, create a frequency array and find the frequency of all the characters of the given string. Now, the required answer will be the sum of the absolute differences in the frequency of every character with the maximum frequency from the frequency array.

Below is the implementation of the above approach: 

C++




// C++ implementation of the approach
#include <bits/stdc++.h>
using namespace std;
 
#define MAX 26
 
// Function to return the minimum additions
// required to balance the given string
int minimumAddition(string str, int len)
{
 
    // To store the frequency of
    // the characters of str
    int freq[MAX] = { 0 };
 
    // Update the frequency of the characters
    for (int i = 0; i < len; i++) {
        freq[str[i] - 'a']++;
    }
 
    // To store the maximum frequency from the array
    int maxFreq = *max_element(freq, freq + MAX);
 
    // To store the minimum additions required
    int minAddition = 0;
    for (int i = 0; i < MAX; i++) {
 
        // Every character's frequency must be
        // equal to the frequency of the most
        // frequently occurring character
        if (freq[i] > 0) {
            minAddition += abs(maxFreq - freq[i]);
        }
    }
 
    return minAddition;
}
 
// Driver code
int main()
{
    string str = "neveropen";
    int len = str.length();
 
    cout << minimumAddition(str, len);
 
    return 0;
}


Java




// Java implementation of the approach
class GFG
{
    final static int MAX = 26;
     
    static int max_element(int freq[])
    {
        int max_ele = freq[0];
        for(int i = 0; i < MAX; i++)
        {
            if(max_ele < freq[i])
                max_ele = freq[i];
        }
        return max_ele;
    }
     
    // Function to return the minimum additions
    // required to balance the given string
    static int minimumAddition(String str, int len)
    {
     
        // To store the frequency of
        // the characters of str
        int freq[] = new int[MAX];
     
        // Update the frequency of the characters
        for (int i = 0; i < len; i++)
        {
            freq[str.charAt(i) - 'a']++;
        }
     
        // To store the maximum frequency from the array
        int maxFreq = max_element(freq);
     
        // To store the minimum additions required
        int minAddition = 0;
        for (int i = 0; i < MAX; i++)
        {
     
            // Every character's frequency must be
            // equal to the frequency of the most
            // frequently occurring character
            if (freq[i] > 0)
            {
                minAddition += Math.abs(maxFreq - freq[i]);
            }
        }
        return minAddition;
    }
     
    // Driver code
    public static void main (String[] args)
    {
        String str = "neveropen";
        int len = str.length();
     
        System.out.println(minimumAddition(str, len));
    }
}
 
// This code is contributed by AnkitRai01


Python3




# Python3 implementation of the approach
MAX = 26
 
# Function to return the minimum additions
# required to balance the given string
def minimumAddition(str1, Len):
 
    # To store the frequency of
    # the characters of str1
    freq = [0 for i in range(MAX)]
 
    # Update the frequency of the characters
    for i in range(Len):
        freq[ord(str1[i]) - ord('a')] += 1
 
    # To store the maximum frequency from the array
    maxFreq = max(freq)
 
    # To store the minimum additions required
    minAddition = 0
    for i in range(MAX):
 
        # Every character's frequency must be
        # equal to the frequency of the most
        # frequently occurring character
        if (freq[i] > 0):
            minAddition += abs(maxFreq - freq[i])
 
    return minAddition
 
# Driver code
str1 = "neveropen"
Len = len(str1)
 
print(minimumAddition(str1, Len))
 
# This code is contributed Mohit Kumar


C#




// C# implementation of the approach
using System;
     
class GFG
{
    static int MAX = 26;
     
    static int max_element(int []freq)
    {
        int max_ele = freq[0];
        for(int i = 0; i < MAX; i++)
        {
            if(max_ele < freq[i])
                max_ele = freq[i];
        }
        return max_ele;
    }
     
    // Function to return the minimum additions
    // required to balance the given string
    static int minimumAddition(String str, int len)
    {
     
        // To store the frequency of
        // the characters of str
        int []freq = new int[MAX];
     
        // Update the frequency of the characters
        for (int i = 0; i < len; i++)
        {
            freq[str[i] - 'a']++;
        }
     
        // To store the maximum frequency from the array
        int maxFreq = max_element(freq);
     
        // To store the minimum additions required
        int minAddition = 0;
        for (int i = 0; i < MAX; i++)
        {
     
            // Every character's frequency must be
            // equal to the frequency of the most
            // frequently occurring character
            if (freq[i] > 0)
            {
                minAddition += Math.Abs(maxFreq - freq[i]);
            }
        }
        return minAddition;
    }
     
    // Driver code
    public static void Main (String[] args)
    {
        String str = "neveropen";
        int len = str.Length;
     
        Console.WriteLine(minimumAddition(str, len));
    }
}
 
// This code is contributed by 29AjayKumar


Javascript




<script>
    // Javascript implementation of the approach
     
    let MAX = 26;
       
    function max_element(freq)
    {
        let max_ele = freq[0];
        for(let i = 0; i < MAX; i++)
        {
            if(max_ele < freq[i])
                max_ele = freq[i];
        }
        return max_ele;
    }
       
    // Function to return the minimum additions
    // required to balance the given string
    function minimumAddition(str, len)
    {
       
        // To store the frequency of
        // the characters of str
        let freq = new Array(MAX);
        freq.fill(0);
       
        // Update the frequency of the characters
        for (let i = 0; i < len; i++)
        {
            freq[str[i].charCodeAt() - 'a'.charCodeAt()]++;
        }
       
        // To store the maximum frequency from the array
        let maxFreq = max_element(freq);
       
        // To store the minimum additions required
        let minAddition = 0;
        for (let i = 0; i < MAX; i++)
        {
       
            // Every character's frequency must be
            // equal to the frequency of the most
            // frequently occurring character
            if (freq[i] > 0)
            {
                minAddition += Math.abs(maxFreq - freq[i]);
            }
        }
        return minAddition;
    }
     
    let str = "neveropen";
    let len = str.length;
 
    document.write(minimumAddition(str, len));
             
</script>


Output

15

Time Complexity: O(n), where n is the length of the given string.
Auxiliary Space: O(1)

Feeling lost in the world of random DSA topics, wasting time without progress? It’s time for a change! Join our DSA course, where we’ll guide you on an exciting journey to master DSA efficiently and on schedule.
Ready to dive in? Explore our Free Demo Content and join our DSA course, trusted by over 100,000 neveropen!

RELATED ARTICLES

Most Popular

Recent Comments