Given a graph G with V nodes and E edges, the task is to colour no more than floor(V/2) nodes such that every node has at least one coloured node at a distance of atmost 1 unit. The distance between any two connected nodes of the graph is always exactly 1 unit. Print the nodes that need to be colored.
Examples:
Input: N = 4,
G:
Output: 1
Input: N = 6,
G:
Output: 3
Approach: This problem can be solved using BFS traversal. Follow the steps below to solve the problem:
- Initialize arrays odd[] and even[] to store nodes which are at a distance of odd and even number of nodes respectively from the source.
- Starting from the source node, perform BFS traversal with distance initialized 0, which denotes the distance from source node. Store all the nodes at a particular level in odd[] or even[] based on the value of distance.
- If distance is odd, that is (distance & 1) is 1, insert that node into odd[]. Otherwise, insert into even[].
- Now print the nodes from the array with minimum elements.
- Since minimum among count of nodes at odd distance or even distance does not exceed floor(V/2), the answer holds correct as every node at odd distance is connected to nodes at even distance and vice-versa.
- Hence, if number of nodes at even distance from source is less, print the nodes from even[]. Otherwise, print all nodes from odd[].
Illustration:
For the graph G given below,
Source Node S = 1
- even[] = {1, 3, 5}
- odd[] = {2, 6, 4}
- minimum(even.size(), odd.size()) = min(3, 3) = 3
- Hence, coloring either all nodes at odd distance from the source or even distance from the source is correct as both their count is same.
Below is the implementation of the above approach:
C++
// C++ Program to implement the // above approach #include <bits/stdc++.h> using namespace std; // Stores the graph map< int , vector< int > > graph; // Stores the visited nodes map< int , int > vis; // Stores the nodes // at odd distance vector< int > odd; // Stores the nodes at // even distance vector< int > even; // Function to separate and // store the odd and even // distant nodes from source void bfs() { // Source node int src = 1; // Stores the nodes and their // respective distances from // the source queue<pair< int , int > > q; // Insert the source q.push({ src, 0 }); // Mark the source visited vis[src] = 1; while (!q.empty()) { // Extract a node from the // front of the queue int node = q.front().first; int dist = q.front().second; q.pop(); // If distance from source // is odd if (dist & 1) { odd.push_back(node); } // Otherwise else { even.push_back(node); } // Traverse its neighbors for ( auto i : graph[node]) { // Insert its unvisited // neighbours into the queue if (!vis.count(i)) { q.push({ i, (dist + 1) }); vis[i] = 1; } } } } // Driver Program int main() { graph[1].push_back(2); graph[2].push_back(1); graph[2].push_back(3); graph[3].push_back(2); graph[3].push_back(4); graph[4].push_back(3); graph[4].push_back(5); graph[5].push_back(4); graph[5].push_back(6); graph[6].push_back(5); graph[6].push_back(1); graph[1].push_back(6); bfs(); if (odd.size() < even.size()) { for ( int i : odd) { cout << i << " " ; } } else { for ( int i : even) { cout << i << " " ; } } return 0; } |
Java
// Java program to implement the // above approach import java.util.ArrayList; import java.util.HashMap; import java.util.LinkedList; import java.util.Map; import java.util.Queue; class Pair { int first, second; public Pair( int first, int second) { this .first = first; this .second = second; } } class GFG{ // Stores the graph static Map<Integer, ArrayList<Integer>> graph = new HashMap<>(); // Stores the visited nodes static Map<Integer, Integer> vis = new HashMap<>(); // Stores the nodes // at odd distance static ArrayList<Integer> odd = new ArrayList<>(); // Stores the nodes at // even distance static ArrayList<Integer> even = new ArrayList<>(); // Function to separate and // store the odd and even // distant nodes from source static void bfs() { // Source node int src = 1 ; // Stores the nodes and their // respective distances from // the source Queue<Pair> q = new LinkedList<>(); // Insert the source q.add( new Pair(src, 0 )); // Mark the source visited vis.put(src, 1 ); while (!q.isEmpty()) { // Extract a node from the // front of the queue int node = q.peek().first; int dist = q.peek().second; q.poll(); // If distance from source // is odd if ((dist & 1 ) != 0 ) { odd.add(node); } // Otherwise else { even.add(node); } // Traverse its neighbors for (Integer i : graph.get(node)) { // Insert its unvisited // neighbours into the queue if (!vis.containsKey(i)) { q.add( new Pair(i, (dist + 1 ))); vis.put(i, 1 ); } } } } // Driver code public static void main(String[] args) { graph.put( 1 , new ArrayList<>()); graph.put( 2 , new ArrayList<>()); graph.put( 3 , new ArrayList<>()); graph.put( 4 , new ArrayList<>()); graph.put( 5 , new ArrayList<>()); graph.put( 6 , new ArrayList<>()); graph.get( 1 ).add( 2 ); graph.get( 2 ).add( 1 ); graph.get( 2 ).add( 3 ); graph.get( 3 ).add( 2 ); graph.get( 3 ).add( 4 ); graph.get( 4 ).add( 3 ); graph.get( 4 ).add( 5 ); graph.get( 5 ).add( 4 ); graph.get( 5 ).add( 6 ); graph.get( 6 ).add( 5 ); graph.get( 6 ).add( 1 ); graph.get( 1 ).add( 6 ); bfs(); if (odd.size() < even.size()) { for ( int i : odd) { System.out.print(i + " " ); } } else { for ( int i : even) { System.out.print(i + " " ); } } } } // This code is contributed by sanjeev2552 |
Python3
# Python3 Program to implement the # above approach # Stores the graph graph = dict () # Stores the visited nodes vis = dict () # Stores the nodes # at odd distance odd = [] # Stores the nodes at # even distance even = [] # Function to separate and # store the odd and even # distant nodes from source def bfs(): # Source node src = 1 ; # Stores the nodes and their # respective distances from # the source q = [] # Insert the source q.append([ src, 0 ]); # Mark the source visited vis[src] = 1 ; while ( len (q) ! = 0 ): # Extract a node from the # front of the queue node = q[ 0 ][ 0 ] dist = q[ 0 ][ 1 ] q.pop( 0 ); # If distance from source # is odd if (dist & 1 ): odd.append(node); # Otherwise else : even.append(node); # Traverse its neighbors for i in graph[node]: # Insert its unvisited # neighbours into the queue if (i not in vis): q.append([ i, (dist + 1 ) ]); vis[i] = 1 ; # Driver code if __name__ = = '__main__' : graph[ 1 ] = [ 2 , 6 ] graph[ 2 ] = [ 1 , 3 ] graph[ 3 ] = [ 2 , 4 ] graph[ 4 ] = [ 3 , 5 ] graph[ 5 ] = [ 4 , 6 ] graph[ 6 ] = [ 5 , 1 ] bfs(); if ( len (odd) < len (even)): for i in odd: print (i, end = ' ' ) else : for i in even: print (i, end = ' ' ) # This code is contributed by rutvik_56 |
C#
// C# program to implement the above approach using System; using System.Collections.Generic; class Pair { public int first, second; public Pair( int first, int second) { this .first = first; this .second = second; } } public class GFG { // Stores the graph static Dictionary< int , List< int > > graph = new Dictionary< int , List< int > >(); // Stores the visited nodes static Dictionary< int , int > vis = new Dictionary< int , int >(); // Stores the nodes // at odd distance static List< int > odd = new List< int >(); // Stores the nodes at // even distance static List< int > even = new List< int >(); // Function to separate and // store the odd and even // distant nodes from source static void bfs() { // Source node int src = 1; // Stores the nodes and their // respective distances from // the source Queue<Pair> q = new Queue<Pair>(); // Insert the source q.Enqueue( new Pair(src, 0)); // Mark the source visited vis[src] = 1; while (q.Count != 0) { // Extract a node from the // front of the queue int node = q.Peek().first; int dist = q.Peek().second; q.Dequeue(); // If distance from source // is odd if ((dist & 1) != 0) { odd.Add(node); } // Otherwise else { even.Add(node); } // Traverse its neighbors foreach ( int i in graph[node]) { // Insert its unvisited // neighbours into the queue if (!vis.ContainsKey(i)) { q.Enqueue( new Pair(i, (dist + 1))); vis[i] = 1; } } } } static public void Main() { // Code graph[1] = new List< int >(); graph[2] = new List< int >(); graph[3] = new List< int >(); graph[4] = new List< int >(); graph[5] = new List< int >(); graph[6] = new List< int >(); graph[1].Add(2); graph[2].Add(1); graph[2].Add(3); graph[3].Add(2); graph[3].Add(4); graph[4].Add(3); graph[4].Add(5); graph[5].Add(4); graph[5].Add(6); graph[6].Add(5); graph[6].Add(1); graph[1].Add(6); bfs(); if (odd.Count < even.Count) { foreach ( int i in odd) { Console.Write(i + " " ); } } else { foreach ( int i in even) { Console.Write(i + " " ); } } } } // This code is contributed by lokeshmvs21. |
Javascript
// JavaScript code to implement the above approach // Stores the graph let graph = new Map(); // Stores the visited nodes let vis = new Map(); // Stores the nodes at odd distance let odd = []; // Stores the nodes at even distance let even = []; // Function to separate and store the odd and even distant nodes from source function bfs() { // Source node let src = 1; // Stores the nodes and their respective distances from the source let q = []; // Insert the source q.push({ first: src, second: 0 }); // Mark the source visited vis.set(src, 1); while (q.length > 0) { // Extract a node from the front of the queue let node = q[0].first; let dist = q[0].second; q.shift(); // If distance from source is odd if (dist & 1 !== 0) { odd.push(node); } // Otherwise else { even.push(node); } // Traverse its neighbors let neighbors = graph.get(node); for (let i of neighbors) { // Insert its unvisited neighbors into the queue if (!vis.has(i)) { q.push({ first: i, second: dist + 1 }); vis.set(i, 1); } } } } // Initialize graph graph.set(1, []); graph.set(2, []); graph.set(3, []); graph.set(4, []); graph.set(5, []); graph.set(6, []); graph.get(1).push(2); graph.get(2).push(1, 3); graph.get(3).push(2, 4); graph.get(4).push(3, 5); graph.get(5).push(4, 6); graph.get(6).push(5, 1); // Call bfs function bfs(); // Print the result if (odd.length < even.length) { console.log(odd.join( " " )); } else { console.log(even.join( " " )); } // This code is contributed by karthik. |
1 3 5
Time Complexity: O(V + E)
Auxiliary Space: O(V)
Ready to dive in? Explore our Free Demo Content and join our DSA course, trusted by over 100,000 neveropen!