Given an array arr[] consisting of N positive integers, the task is to find the minimum possible length of a rod that can be cut into N equal parts such that every ith part can be cut into arr[i] equal parts.
Examples:
Input: arr[] = {1, 2}
Output: 4
Explanation:
Consider the length of the rod as 4. Then it can be divided in 2 equal parts, each having length 2.
Now, part 1 can be divided in arr[0](= 1) equal parts of length 2.
Part 2 can be divided in arr[1](= 2) equal parts of length 1.
Therefore, the minimum length of the rod must be 4.Input: arr[] = {1, 1}
Output: 2
Naive Approach: The given problem can be solved based on the following observations:
- Consider the minimum length of the rod is X, then this rod is cut into N equal parts and the length of each part will be X/N.
- Now each N parts will again be cut down as follows:
- Part 1 will be cut into arr[0] equal where each part has a length say a1.
- Part 2 will be cut into arr[1] equal where each part has a length say a2.
- Part 3 will be cut into arr[2] equal where each part has a length say a3.
- .
- .
- .
- and so on.
- Now, the above relation can also be written as:
X/N = arr[0]*a1 = arr[1]*a2 = … = arr[N – 1]*aN.
- Therefore, the minimum length of the rod is given by:
N*lcm (arr[0]*a1, arr[1]*a2, …, arr[N – 1]*aN)
From the above observations, print the value of the product of N and the LCM of the given array arr[] as the resultant minimum length of the rod.
Below is the implementation of the above approach:
C++
// C++ program for the above approach #include <bits/stdc++.h> using namespace std; // Function to find GCD // of two numbers a and b int gcd( int a, int b) { // Base Case if (b == 0) return a; // Find GCD recursively return gcd(b, a % b); } // Function to find the LCM // of the resultant array int findlcm( int arr[], int n) { // Initialize a variable ans // as the first element int ans = arr[0]; // Traverse the array for ( int i = 1; i < n; i++) { // Update LCM ans = (((arr[i] * ans)) / (gcd(arr[i], ans))); } // Return the minimum // length of the rod return ans; } // Function to find the minimum length // of the rod that can be divided into // N equals parts and each part can be // further divided into arr[i] equal parts void minimumRod( int A[], int N) { // Print the result cout << N * findlcm(A, N); } // Driver Code int main() { int arr[] = { 1, 2 }; int N = sizeof (arr) / sizeof (arr[0]); minimumRod(arr, N); return 0; } |
Java
// Java program for the above approach import java.io.*; import java.lang.*; import java.util.*; public class GFG { // Function to find GCD // of two numbers a and b static int gcd( int a, int b) { // Base Case if (b == 0 ) return a; // Find GCD recursively return gcd(b, a % b); } // Function to find the LCM // of the resultant array static int findlcm( int arr[], int n) { // Initialize a variable ans // as the first element int ans = arr[ 0 ]; // Traverse the array for ( int i = 1 ; i < n; i++) { // Update LCM ans = (((arr[i] * ans)) / (gcd(arr[i], ans))); } // Return the minimum // length of the rod return ans; } // Function to find the minimum length // of the rod that can be divided into // N equals parts and each part can be // further divided into arr[i] equal parts static void minimumRod( int A[], int N) { // Print the result System.out.println(N * findlcm(A, N)); } // Driver Code public static void main(String[] args) { int arr[] = { 1 , 2 }; int N = arr.length; minimumRod(arr, N); } } // This code is contributed by Kingash. |
Python3
# Python3 program for the above approach # Function to find GCD # of two numbers a and b def gcd(a, b): # Base Case if (b = = 0 ): return a # Find GCD recursively return gcd(b, a % b) # Function to find the LCM # of the resultant array def findlcm(arr, n): # Initialize a variable ans # as the first element ans = arr[ 0 ] # Traverse the array for i in range (n): # Update LCM ans = (((arr[i] * ans)) / (gcd(arr[i], ans))) # Return the minimum # length of the rod return ans # Function to find the minimum length # of the rod that can be divided into # N equals parts and each part can be # further divided into arr[i] equal parts def minimumRod(A, N): # Print the result print ( int (N * findlcm(A, N))) # Driver Code arr = [ 1 , 2 ] N = len (arr) minimumRod(arr, N) # This code is contributed by sanjoy_62 |
C#
// C# program for the above approach using System; class GFG { // Function to find GCD // of two numbers a and b static int gcd( int a, int b) { // Base Case if (b == 0) return a; // Find GCD recursively return gcd(b, a % b); } // Function to find the LCM // of the resultant array static int findlcm( int [] arr, int n) { // Initialize a variable ans // as the first element int ans = arr[0]; // Traverse the array for ( int i = 1; i < n; i++) { // Update LCM ans = (((arr[i] * ans)) / (gcd(arr[i], ans))); } // Return the minimum // length of the rod return ans; } // Function to find the minimum length // of the rod that can be divided into // N equals parts and each part can be // further divided into arr[i] equal parts static void minimumRod( int [] A, int N) { // Print the result Console.WriteLine(N * findlcm(A, N)); } // Driver code static void Main() { int [] arr = { 1, 2 }; int N = arr.Length; minimumRod(arr, N); } } // This code is contributed by sk944795. |
Javascript
<script> // javascript program for the above approach // Function to find GCD // of two numbers a and b function gcd(a, b) { // Base Case if (b == 0) return a; // Find GCD recursively return gcd(b, a % b); } // Function to find the LCM // of the resultant array function findlcm(arr, n) { // Initialize a variable ans // as the first element let ans = arr[0]; // Traverse the array for (let i = 1; i < n; i++) { // Update LCM ans = (((arr[i] * ans)) / (gcd(arr[i], ans))); } // Return the minimum // length of the rod return ans; } // Function to find the minimum length // of the rod that can be divided into // N equals parts and each part can be // further divided into arr[i] equal parts function minimumRod(A, N) { // Print the result document.write(N * findlcm(A, N)); } // Driver Code let arr = [ 1, 2 ]; let N = arr.length; minimumRod(arr, N); </script> |
4
Time Complexity: O(N*log M) where M is the maximum element of the array.
Auxiliary Space: O(1)
Ready to dive in? Explore our Free Demo Content and join our DSA course, trusted by over 100,000 neveropen!