Monday, November 18, 2024
Google search engine
HomeData Modelling & AIMinimum length of a rod that can be split into N equal...

Minimum length of a rod that can be split into N equal parts that can further be split into given number of equal parts

Given an array arr[] consisting of N positive integers, the task is to find the minimum possible length of a rod that can be cut into N equal parts such that every ith part can be cut into arr[i] equal parts.

Examples:

Input: arr[] = {1, 2}
Output: 4
Explanation:
Consider the length of the rod as 4. Then it can be divided in 2 equal parts, each having length 2.
Now, part 1 can be divided in arr[0](= 1) equal parts of length 2.
Part 2 can be divided in arr[1](= 2) equal parts of length 1.
Therefore, the minimum length of the rod must be 4.

Input: arr[] = {1, 1}
Output: 2

Naive Approach: The given problem can be solved based on the following observations:

  • Consider the minimum length of the rod is X, then this rod is cut into N equal parts and the length of each part will be X/N.
  • Now each N parts will again be cut down as follows:
    • Part 1 will be cut into arr[0] equal where each part has a length say a1.
    • Part 2 will be cut into arr[1] equal where each part has a length say a2.
    • Part 3 will be cut into arr[2] equal where each part has a length say a3.
    • .
    • .
    • .
    • and so on.
  • Now, the above relation can also be written as:

X/N = arr[0]*a1 = arr[1]*a2 =  …  = arr[N – 1]*aN.

  • Therefore, the minimum length of the rod is given by:

N*lcm (arr[0]*a1, arr[1]*a2, …, arr[N – 1]*aN)

From the above observations, print the value of the product of N and the LCM of the given array arr[] as the resultant minimum length of the rod.

Below is the implementation of the above approach:

C++




// C++ program for the above approach
 
#include <bits/stdc++.h>
using namespace std;
 
// Function to find GCD
// of two numbers a and b
int gcd(int a, int b)
{
    // Base Case
    if (b == 0)
        return a;
 
    // Find GCD recursively
    return gcd(b, a % b);
}
 
// Function to find the LCM
// of the resultant array
int findlcm(int arr[], int n)
{
    // Initialize a variable ans
    // as the first element
    int ans = arr[0];
 
    // Traverse the array
    for (int i = 1; i < n; i++) {
 
        // Update LCM
        ans = (((arr[i] * ans))
               / (gcd(arr[i], ans)));
    }
 
    // Return the minimum
    // length of the rod
    return ans;
}
 
// Function to find the minimum length
// of the rod that can be divided into
// N equals parts and each part can be
// further divided into arr[i] equal parts
void minimumRod(int A[], int N)
{
    // Print the result
    cout << N * findlcm(A, N);
}
 
// Driver Code
int main()
{
    int arr[] = { 1, 2 };
    int N = sizeof(arr) / sizeof(arr[0]);
    minimumRod(arr, N);
 
    return 0;
}


Java




// Java program for the above approach
import java.io.*;
import java.lang.*;
import java.util.*;
 
public class GFG {
 
    // Function to find GCD
    // of two numbers a and b
    static int gcd(int a, int b)
    {
        // Base Case
        if (b == 0)
            return a;
 
        // Find GCD recursively
        return gcd(b, a % b);
    }
 
    // Function to find the LCM
    // of the resultant array
    static int findlcm(int arr[], int n)
    {
        // Initialize a variable ans
        // as the first element
        int ans = arr[0];
 
        // Traverse the array
        for (int i = 1; i < n; i++) {
 
            // Update LCM
            ans = (((arr[i] * ans)) / (gcd(arr[i], ans)));
        }
 
        // Return the minimum
        // length of the rod
        return ans;
    }
 
    // Function to find the minimum length
    // of the rod that can be divided into
    // N equals parts and each part can be
    // further divided into arr[i] equal parts
    static void minimumRod(int A[], int N)
    {
        // Print the result
        System.out.println(N * findlcm(A, N));
    }
 
    // Driver Code
    public static void main(String[] args)
    {
        int arr[] = { 1, 2 };
        int N = arr.length;
        minimumRod(arr, N);
    }
}
 
// This code is contributed by Kingash.


Python3




# Python3 program for the above approach
 
# Function to find GCD
# of two numbers a and b
def gcd(a, b):
     
    # Base Case
    if (b == 0):
        return a
         
    # Find GCD recursively
    return gcd(b, a % b)
 
# Function to find the LCM
# of the resultant array
def findlcm(arr, n):
     
    # Initialize a variable ans
    # as the first element
    ans = arr[0]
     
    # Traverse the array
    for i in range(n):
         
        # Update LCM
        ans = (((arr[i] * ans)) /
            (gcd(arr[i], ans)))
     
    # Return the minimum
    # length of the rod
    return ans
 
# Function to find the minimum length
# of the rod that can be divided into
# N equals parts and each part can be
# further divided into arr[i] equal parts
def minimumRod(A, N):
     
    # Print the result
    print(int(N * findlcm(A, N)))
 
# Driver Code
arr = [ 1, 2 ]
N = len(arr)
 
minimumRod(arr, N)
 
# This code is contributed by sanjoy_62


C#




// C# program for the above approach
using System;
class GFG
{
   
    // Function to find GCD
    // of two numbers a and b
    static int gcd(int a, int b)
    {
       
        // Base Case
        if (b == 0)
            return a;
 
        // Find GCD recursively
        return gcd(b, a % b);
    }
 
    // Function to find the LCM
    // of the resultant array
    static int findlcm(int[] arr, int n)
    {
       
        // Initialize a variable ans
        // as the first element
        int ans = arr[0];
 
        // Traverse the array
        for (int i = 1; i < n; i++) {
 
            // Update LCM
            ans = (((arr[i] * ans)) / (gcd(arr[i], ans)));
        }
 
        // Return the minimum
        // length of the rod
        return ans;
    }
 
    // Function to find the minimum length
    // of the rod that can be divided into
    // N equals parts and each part can be
    // further divided into arr[i] equal parts
    static void minimumRod(int[] A, int N)
    {
       
        // Print the result
        Console.WriteLine(N * findlcm(A, N));
    }
   
  // Driver code
    static void Main()
    {
        int[] arr = { 1, 2 };
        int N = arr.Length;
        minimumRod(arr, N);
    }
}
 
// This code is contributed by sk944795.


Javascript




<script>
 
// javascript program for the above approach
 
    // Function to find GCD
    // of two numbers a and b
    function gcd(a, b)
    {
        // Base Case
        if (b == 0)
            return a;
  
        // Find GCD recursively
        return gcd(b, a % b);
    }
  
    // Function to find the LCM
    // of the resultant array
    function findlcm(arr, n)
    {
        // Initialize a variable ans
        // as the first element
        let ans = arr[0];
  
        // Traverse the array
        for (let i = 1; i < n; i++) {
  
            // Update LCM
            ans = (((arr[i] * ans)) / (gcd(arr[i], ans)));
        }
  
        // Return the minimum
        // length of the rod
        return ans;
    }
  
    // Function to find the minimum length
    // of the rod that can be divided into
    // N equals parts and each part can be
    // further divided into arr[i] equal parts
    function minimumRod(A, N)
    {
        // Print the result
        document.write(N * findlcm(A, N));
    }
 
// Driver Code
 
    let arr = [ 1, 2 ];
    let N = arr.length;
    minimumRod(arr, N);
     
 
</script>


Output: 

4

 

Time Complexity: O(N*log M) where M is the maximum element of the array.
Auxiliary Space: O(1)

Feeling lost in the world of random DSA topics, wasting time without progress? It’s time for a change! Join our DSA course, where we’ll guide you on an exciting journey to master DSA efficiently and on schedule.
Ready to dive in? Explore our Free Demo Content and join our DSA course, trusted by over 100,000 neveropen!

RELATED ARTICLES

Most Popular

Recent Comments