Sunday, November 17, 2024
Google search engine
HomeData Modelling & AIMinimum distance between two occurrences of maximum

Minimum distance between two occurrences of maximum

You are given an array of n-elements with a basic condition that occurrence of greatest element is more than once. You have to find the minimum distance between maximums. (n>=2).

Examples: 

Input : arr[] = {3, 5, 2, 3, 5, 3, 5}
Output : Minimum Distance = 2
Explanation : Greatest element is 5 and its index 
are 1, 4 and 6. Resulting minimum distance of 2 
from position 4 to 6.

Input : arr[] = {1, 1, 1, 1, 1, 1}
Output : Minimum Distance = 1
Explanation : Greatest element is 1 and its index 
are 0, 1, 2, 3, 4 and 5. Resulting minimum distance
of 1.

A basic approach runs in O(n2). First we find the maximum element. Then for each element equal to maximum element, we find the nearest maximum element.

An efficient solution finish our job in a single traversing of array. We initialize maximum_element = arr[0], min_distance = n and index = 0. After that for each element we should check whether element is equal to, greater or less than maximum element. Depending upon three cases we have following option: 

  • case a: If element is equal to maximum_element then update min_dis = min( min_dis , (i-index)) and update index = i;
  • case b: If element is greater than maximum_element update maximum_element = arr[i], index = i and min_dis = n.
  • case c: If element is less than maximum_element then iterate to next element.

Implementation:

C++




// C++ program to find Min distance
// of maximum element
#include<bits/stdc++.h>
using namespace std;
 
//function to return min distance
int minDistance (int arr[], int n)
{
    int maximum_element = arr[0];
    int min_dis = n;
    int index = 0;
 
    for (int i=1; i<n; i++)
    {
        // case a
        if (maximum_element == arr[i])
        {
            min_dis = min(min_dis, (i-index));
            index = i;
        }
 
        // case b
        else if (maximum_element < arr[i])
        {
            maximum_element = arr[i];
            min_dis = n;
            index = i;
        }
 
        // case c
        else
            continue;
    }
 
    return min_dis;
}
 
// driver program
int main()
{
    int arr[] = {6, 3, 1, 3, 6, 4, 6};
    int n = sizeof(arr)/sizeof(arr[0]);
    cout << "Minimum distance = "
         << minDistance(arr, n);
    return 0;
}


Java




// Java program to find Min distance
// of maximum element
class GFG
{
     
    // function to return min distance
    static int minDistance (int arr[], int n)
    {
        int maximum_element = arr[0];
        int min_dis = n;
        int index = 0;
 
        for (int i=1; i<n; i++)
        {
             
            // case a
            if (maximum_element == arr[i])
            {
                min_dis = Math.min(min_dis, (i-index));
                index = i;
            }
     
            // case b
            else if (maximum_element < arr[i])
            {
                maximum_element = arr[i];
                min_dis = n;
                index = i;
            }
     
            // case c
            else
                continue;
        }
     
        return min_dis;
    }
     
    // Driver code
    public static void main (String[] args)
    {
        int arr[] = {6, 3, 1, 3, 6, 4, 6};
        int n = arr.length;
        System.out.print("Minimum distance = "+minDistance(arr, n));
    }
}
 
// This code is contributed by Anant Agarwal.


Python3




# Python3 program to find Min
# distance of maximum element
 
# Function to return min distance
def minDistance (arr, n):
 
    maximum_element = arr[0]
    min_dis = n
    index = 0
 
    for i in range(1, n):
     
        # case a
        if (maximum_element == arr[i]):
         
            min_dis = min(min_dis, (i - index))
            index = i
         
 
        # case b
        elif (maximum_element < arr[i]):
         
            maximum_element = arr[i]
            min_dis = n
            index = i
         
 
        # case c
        else:
            continue
     
 
    return min_dis
 
 
# driver program
arr = [6, 3, 1, 3, 6, 4, 6]
n = len(arr)
print("Minimum distance =", minDistance(arr, n))
  
# This code is contributed by Smitha Dinesh Semwal


C#




// C# program to find Min distance
// of maximum element
using System;
 
class GFG {
     
    // function to return min distance
    static int minDistance (int []arr, int n)
    {
        int maximum_element = arr[0];
        int min_dis = n;
        int index = 0;
 
        for (int i = 1; i < n; i++)
        {
             
            // case a
            if (maximum_element == arr[i])
            {
                min_dis = Math.Min(min_dis,
                                (i - index));
                index = i;
            }
     
            // case b
            else if (maximum_element < arr[i])
            {
                maximum_element = arr[i];
                min_dis = n;
                index = i;
            }
     
            // case c
            else
                continue;
        }
     
        return min_dis;
    }
     
    // Driver code
    public static void Main ()
    {
        int []arr = {6, 3, 1, 3, 6, 4, 6};
        int n = arr.Length;
         
        Console.WriteLine("Minimum distance = "
                        + minDistance(arr, n));
    }
}
 
// This code is contributed by vt_m.


PHP




<?php
// PHP program to find Min distance
// of maximum element
 
//function to return min distance
function minDistance($arr, $n)
{
    $maximum_element = $arr[0];
    $min_dis = $n;
    $index = 0;
 
    for ($i = 1; $i < $n; $i++)
    {
         
        // case a
        if ($maximum_element == $arr[$i])
        {
            $min_dis = min($min_dis, ($i - $index));
            $index = $i;
        }
 
        // case b
        else if ($maximum_element < $arr[$i])
        {
            $maximum_element = $arr[$i];
            $min_dis = $n;
            $index = $i;
        }
 
        // case c
        else
            continue;
    }
 
return $min_dis;
}
 
    // Driver Code
    $arr = array(6, 3, 1, 3, 6, 4, 6);
    $n = count($arr);
    echo "Minimum distance = "
          .minDistance($arr,$n);
           
// This code is contributed by Sam007
?>


Javascript




<script>
 
// JavaScript program to find Min distance
// of maximum element
 
    // function to return min distance
    function minDistance (arr, n)
    {
        let maximum_element = arr[0];
        let min_dis = n;
        let index = 0;
   
        for (let i=1; i<n; i++)
        {
               
            // case a
            if (maximum_element == arr[i])
            {
                min_dis = Math.min(min_dis, (i-index));
                index = i;
            }
       
            // case b
            else if (maximum_element < arr[i])
            {
                maximum_element = arr[i];
                min_dis = n;
                index = i;
            }
       
            // case c
            else
                continue;
        }
       
        return min_dis;
    
  
// Driver code
 
        let arr = [6, 3, 1, 3, 6, 4, 6];
        let n = arr.length;
        document.write("Minimum distance = "+minDistance(arr, n));
 
</script>


Output

Minimum distance = 2

Time Complexity: O(n)
Auxiliary Space: O(1)

Feeling lost in the world of random DSA topics, wasting time without progress? It’s time for a change! Join our DSA course, where we’ll guide you on an exciting journey to master DSA efficiently and on schedule.
Ready to dive in? Explore our Free Demo Content and join our DSA course, trusted by over 100,000 neveropen!

RELATED ARTICLES

Most Popular

Recent Comments