Sunday, November 17, 2024
Google search engine
HomeData Modelling & AIMinimum cost to merge numbers from 1 to N

Minimum cost to merge numbers from 1 to N

Given an integer N, the task is to find the minimum cost to merge all the numbers from 1 to N where the cost of merging two set of numbers A and B is equal to the product of the product of the numbers in the respective sets.

Examples:  

Input: N = 4 
Output: 32
Merging {1} and {2} costs 1 * 2 = 2 
Merging {1, 2} and {3} costs 2 * 3 = 6 
Merge{1, 2, 3} and {4} costs 6 * 4 = 24 
Hence, the minimal cost is 2 + 6 + 24 = 32

Input: N = 2 
Output:

Approach: 

  • The first approach that comes in our mind is sorting. We take first two smallest elements and add them, then continue adding to the rest of the elements in the sorted array. But it fails when the current running sum exceeds the next smallest value in the array coming next.
Take N = 5,
If we take the sorting approach, then-
Merge {1} and {2} - 1 * 2 = 2
Merge {1, 2} and {3} - 2 * 3 = 6
Merge{1, 2, 3} and {4} - 6 * 4 = 24
Merge{1, 2, 3, 4} and {5} - 24 * 5 = 120
Total sum = 152
But optimal way is,
Merge {1} and {2} - 1 * 2 = 2
Merge {1, 2} and {3} - 2 * 3 = 6
Merge {4} and {5} - 4 * 5 = 20
Merge {1, 2, 3} and {4, 5} - 6 * 20 = 120
Total sum = 148
This is the minimal answer.
  • So, the correct approach to solve this problem is the Min-heap based approach. Initially, we push all the numbers from 1 to N into the Min-Heap.
  • At every iteration, we extract the minimum and the second minimum element from the Min-Heap and insert their product back into it. This ensures that the addition cost generated will be minimum.
  • We keep on repeating the above step until there is only one element remaining in the Min-Heap. The calculated sum till that instant gives us the required answer.

Below is the implementation of the above approach: 

C++




// C++ program to find the Minimum
// cost to merge numbers
// from 1 to N.
#include <bits/stdc++.h>
using namespace std;
 
// Function returns the
// minimum cost
int GetMinCost(int N)
{
 
    // Min Heap representation
    priority_queue<int, vector<int>,
                   greater<int> > pq;
 
    // Add all elements to heap
    for (int i = 1; i <= N; i++) {
        pq.push(i);
    }
     
    int cost = 0;
     
    while (pq.size() > 1)
    {
        // First minimum
        int mini = pq.top();
        pq.pop();
 
        // Second minimum
        int secondmini = pq.top();
        pq.pop();
 
        // Multiply them
        int current = mini * secondmini;
 
        // Add to the cost
        cost += current;
 
        // Push the product into the
        // heap again
        pq.push(current);
    }
 
    // Return the optimal cost
    return cost;
}
 
// Driver code
int main()
{
    int N = 5;
    cout << GetMinCost(N);
}


Java




// Java program for the above approach
import java.util.*;
 
class GFG {
 
// Function returns the
// minimum cost
static int GetMinCost(int N)
{
 
    // Min Heap representation
    PriorityQueue<Integer> pq;
    pq = new PriorityQueue<>();
 
    // Add all elements to heap
    for(int i = 1; i <= N; i++)
    {
       pq.add(i);
    }
 
    int cost = 0;
 
    while (pq.size() > 1)
    {
         
        // First minimum
        int mini = pq.remove();
     
        // Second minimum
        int secondmini = pq.remove();
     
        // Multiply them
        int current = mini * secondmini;
     
        // Add to the cost
        cost += current;
     
        // Push the product into the
        // heap again
        pq.add(current);
    }
     
    // Return the optimal cost
    return cost;
}
 
// Driver Code
public static void main(String args[])
{
    int N = 5;
 
    // Function call
    System.out.println(GetMinCost(N));
}
}
 
// This code is contributed by rutvik_56


Python3




# python3 program to find the Minimum
# cost to merge numbers
# from 1 to N.
 
# Function returns the
# minimum cost
def GetMinCost(N):
     
    # Min Heap representation
    pq = []
 
    # Add all elements to heap
    for i in range(1, N+1, 1):
        pq.append(i)
 
    pq.sort(reverse = False)
     
    cost = 0
     
    while (len(pq) > 1):
         
        # First minimum
        mini = pq[0]
        pq.remove(pq[0])
 
        # Second minimum
        secondmini = pq[0]
        pq.remove(pq[0])
 
        # Multiply them
        current = mini * secondmini
 
        # Add to the cost
        cost += current
 
        # Push the product into the
        # heap again
        pq.append(current)
        pq.sort(reverse = False)
 
    # Return the optimal cost
    return cost
 
# Driver code
if __name__ == '__main__':
     
    N = 5
    print(GetMinCost(N))
 
# This code is contributed by Bhupendra_Singh


C#




// C# program to find the Minimum 
// cost to merge numbers 
// from 1 to N.
using System;
using System.Collections.Generic;
 
class GFG{
 
// Function returns the 
// minimum cost
static int GetMinCost(int N)
{
     
    // Min Heap representation
    List<int> pq = new List<int>();
   
    // Add all elements to heap
    for(int i = 1; i <= N; i++)
    {
        pq.Add(i);
    }
       
    int cost = 0;
    pq.Sort();
     
    while (pq.Count > 1)
    {
         
        // First minimum
        int mini = pq[0];
        pq.RemoveAt(0);
   
        // Second minimum
        int secondmini = pq[0];
        pq.RemoveAt(0);
   
        // Multiply them
        int current = mini * secondmini;
   
        // Add to the cost
        cost += current;
   
        // Push the product into the
        // heap again
        pq.Add(current);
        pq.Sort();
    }
     
    // Return the optimal cost
    return cost;
}
 
// Driver code
static void Main()
{
    int N = 5;
     
    Console.WriteLine(GetMinCost(N));
}
}
 
// This code is contributed by divyeshrabadiya07


Javascript




<script>
    // Javascript program for the above approach
     
    // Function returns the
    // minimum cost
    function GetMinCost(N)
    {
 
        // Min Heap representation
        let pq = [];
 
        // Add all elements to heap
        for(let i = 1; i <= N; i++)
        {
           pq.push(i);
        }
        pq.sort(function(a, b){return a - b});
 
        let cost = 0;
 
        while (pq.length > 1)
        {
 
            // First minimum
            let mini = pq[0];
            pq.shift();
 
            // Second minimum
            let secondmini = pq[0];
            pq.shift();
 
            // Multiply them
            let current = mini * secondmini;
 
            // Add to the cost
            cost += current;
 
            // Push the product into the
            // heap again
            pq.push(current);
            pq.sort(function(a, b){return a - b});
        }
 
        // Return the optimal cost
        return cost;
    }
     
    let N = 5;
  
    // Function call
    document.write(GetMinCost(N));
   
  // This code is contributed by decode2207.
</script>


Output: 

148

 

Time Complexity: O(NlogN) 
Auxiliary Space: O(N)
 

Feeling lost in the world of random DSA topics, wasting time without progress? It’s time for a change! Join our DSA course, where we’ll guide you on an exciting journey to master DSA efficiently and on schedule.
Ready to dive in? Explore our Free Demo Content and join our DSA course, trusted by over 100,000 neveropen!

RELATED ARTICLES

Most Popular

Recent Comments