Given an array arr[], the task is to find the minimum cost to remove all elements from the array where the cost of removing an element is 2^j * arr[i]. Here, j is the number of elements that have already been removed.
Examples:
Input: arr[] = {3, 1, 3, 2}
Output: 25
Explanation:
First remove 3. Cost = 2^(0)*3 = 3
Then remove 3. Cost = 2^(1)*3 = 6
Then remove 2. Cost = 2^(2)*2 = 8
At last, remove 1. Cost = 2^(3)*1 = 8
Total Cost = 3 + 6 + 8 + 8 = 25Input: arr[] = {1, 2}
Output: 4
Explanation:
First remove 2. Cost = 2^(0)*2 = 2
Then remove 1. Cost = 2^(1)*1 = 2
Total Cost = 2 + 2 = 4
Approach: The idea is to use a greedy programming paradigm to solve this problem.
We have to minimize the expression ( 2^j * arr[i] ). This can be done by:
- Sort the Array in Decreasing order.
- Multiply pow(2, i) with every element i, starting from 0 to the size of the array.
Therefore, the total cost of removing elements from the array is given as:
when the array is in decreasing order.
Below is the implementation of the above approach:
C++
// C++ implementation to find the // minimum cost of removing all // elements from the array #include <bits/stdc++.h> using namespace std; #define ll long long int // Function to find the minimum // cost of removing elements from // the array int removeElements(ll arr[], int n) { // Sorting in Increasing order sort(arr, arr + n, greater< int >()); ll ans = 0; // Loop to find the minimum // cost of removing elements for ( int i = 0; i < n; i++) { ans += arr[i] * pow (2, i); } return ans; } // Driver Code int main() { int n = 4; ll arr[n] = { 3, 1, 2, 3 }; // Function Call cout << removeElements(arr, n); } |
Java
// Java implementation to find the // minimum cost of removing all // elements from the array import java.util.*; class GFG{ // Reverse array in decreasing order static long [] reverse( long a[]) { int i, n = a.length; long t; for (i = 0 ; i < n / 2 ; i++) { t = a[i]; a[i] = a[n - i - 1 ]; a[n - i - 1 ] = t; } return a; } // Function to find the minimum // cost of removing elements from // the array static long removeElements( long arr[], int n) { // Sorting in Increasing order Arrays.sort(arr); arr = reverse(arr); long ans = 0 ; // Loop to find the minimum // cost of removing elements for ( int i = 0 ; i < n; i++) { ans += arr[i] * Math.pow( 2 , i); } return ans; } // Driver Code public static void main(String[] args) { int n = 4 ; long arr[] = { 3 , 1 , 2 , 3 }; // Function call System.out.print(removeElements(arr, n)); } } // This code is contributed by amal kumar choubey |
Python3
# Python3 implementation to find the # minimum cost of removing all # elements from the array # Function to find the minimum # cost of removing elements from # the array def removeElements(arr, n): # Sorting in Increasing order arr.sort(reverse = True ) ans = 0 # Loop to find the minimum # cost of removing elements for i in range (n): ans + = arr[i] * pow ( 2 , i) return ans # Driver Code if __name__ = = "__main__" : n = 4 arr = [ 3 , 1 , 2 , 3 ] # Function call print (removeElements(arr, n)) # This code is contributed by chitranayal |
C#
// C# implementation to find the // minimum cost of removing all // elements from the array using System; class GFG{ // Reverse array in decreasing order static long [] reverse( long []a) { int i, n = a.Length; long t; for (i = 0; i < n / 2; i++) { t = a[i]; a[i] = a[n - i - 1]; a[n - i - 1] = t; } return a; } // Function to find the minimum // cost of removing elements from // the array static long removeElements( long []arr, int n) { // Sorting in Increasing order Array.Sort(arr); arr = reverse(arr); long ans = 0; // Loop to find the minimum // cost of removing elements for ( int i = 0; i < n; i++) { ans += ( long )(arr[i] * Math.Pow(2, i)); } return ans; } // Driver Code public static void Main(String[] args) { int n = 4; long []arr = { 3, 1, 2, 3 }; // Function call Console.Write(removeElements(arr, n)); } } // This code is contributed by amal kumar choubey |
Javascript
<script> // JavaScript implementation to find the // minimum cost of removing all // elements from the array // Function to find the minimum // cost of removing elements from // the array function removeElements(arr, n) { // Sorting in Increasing order arr.sort((a, b) => b - a); var ans = 0; // Loop to find the minimum // cost of removing elements for ( var i = 0; i < n; i++) { ans += arr[i] * Math.pow(2, i); } return ans; } // Driver Code var n = 4; var arr = [3, 1, 2, 3]; // Function call document.write(removeElements(arr, n)); </script> |
25
Time Complexity: O(N * log N)
Auxiliary Space: O(1)
Ready to dive in? Explore our Free Demo Content and join our DSA course, trusted by over 100,000 neveropen!