Wednesday, November 20, 2024
Google search engine
HomeData Modelling & AIMiddle term in the binomial expansion series

Middle term in the binomial expansion series

Given three integers A, X, and n. The task is to find the middle term in the binomial expansion series. 

Examples: 

Input : A = 1, X = 1, n = 6
Output : MiddleTerm = 20

Input : A = 2, X = 4, n = 7
Output : MiddleTerm1 = 35840, MiddleTerm2 = 71680

Approach 
 

(A + X)n = nC0 An X0 + nC1 An-1 X1 + nC2 An-2 X2 + ……… + nCn-1 A1 Xn-1 + nCn A0 Xn 
Total number of term in the binomial expansion of (A + X)n is (n + 1).
General term in binomial expansion is given by: 
Tr+1 = nCr An-r Xr
If n is even number: 
Let m be the middle term of binomial expansion series, then 
n = 2m 
m = n / 2 
We know that there will be n + 1 term so, 
n + 1 = 2m +1 
In this case, there will is only one middle term. This middle term is (m + 1)th term. 
Hence, the middle term 
Tm+1 = nCmAn-mXm
if n is odd number: 
Let m be the middle term of binomial expansion series, then 
let n = 2m + 1 
m = (n-1) / 2 
number of terms = n + 1 = 2m + 1 + 1 = 2m + 2 
In this case there will be two middle terms. These middle terms will be (m + 1)th and (m + 2)th term. 
Hence, the middle terms are : 
Tm+1 = nC(n-1)/2 A(n+1)/2 X(n-1)/2 
Tm+2 = nC(n+1)/2 A(n-1)/2 X(n+1)/2 
 

 

 

C++




// C++ program to find the middle term
// in binomial expansion series.
#include <bits/stdc++.h>
using namespace std;
 
// function to calculate
// factorial of a number
int factorial(int n)
    int fact = 1;
    for (int i = 1; i <= n; i++)
        fact *= i;
        
    return fact;
}
 
// Function to find middle term in
// binomial expansion series.
void findMiddleTerm(int A, int X, int n)
{
    int i, j, aPow, xPow;
    float middleTerm1, middleTerm2;
 
    if (n % 2 == 0)
    {
        // If n is even
         
        // calculating the middle term
        i = n / 2;
 
        // calculating the value of A to
        // the power k and X to the power k
        aPow = (int)pow(A, n - i);
        xPow = (int)pow(X, i);
 
        middleTerm1 = ((float)factorial(n) /
          (factorial(n - i) * factorial(i)))
                              * aPow * xPow;
                               
        cout << "MiddleTerm = "
             << middleTerm1 << endl;
    }
    else {
 
        // If n is odd
         
        // calculating the middle term
        i = (n - 1) / 2;
        j = (n + 1) / 2;
 
        // calculating the value of A to the
        // power k and X to the power k
        aPow = (int)pow(A, n - i);
        xPow = (int)pow(X, i);
 
        middleTerm1 = ((float)factorial(n) /
           (factorial(n - i) * factorial(i)))
                               * aPow * xPow;
 
        // calculating the value of A to the
        // power k and X to the power k
        aPow = (int)pow(A, n - j);
        xPow = (int)pow(X, j);
 
        middleTerm2 = ((float)factorial(n) /
           (factorial(n - j) * factorial(j)))
                               * aPow * xPow;
 
        cout << "MiddleTerm1 = "
                      << middleTerm1 << endl;
                       
        cout << "MiddleTerm2 = "
                      << middleTerm2 << endl;
    }
}
 
// Driver code
int main()
{
    int n = 5, A = 2, X = 3;
     
    // function call
    findMiddleTerm(A, X, n);
 
    return 0;
}


Java




// Java program to find the middle term
// in binomial expansion series.
import java.math.*;
 
class GFG {
 
    // function to calculate factorial
    // of a number
    static int factorial(int n)
    {
        int fact = 1, i;
        if (n == 0)
            return 1;
        for (i = 1; i <= n; i++)
            fact *= i;
             
        return fact;
    }
     
    // Function to find middle term in
    // binomial expansion series.
    static void findmiddle(int A, int X, int n)
    {
        int i, j, aPow, xPow;
        float middleTerm1, middleTerm2;
 
        if (n % 2 == 0)
        {
            // If n is even
             
            // calculating the middle term
            i = n / 2;
 
            // calculating the value of A to
            // the power k and X to the power k
            aPow = (int)Math.pow(A, n - i);
            xPow = (int)Math.pow(X, i);
     
            middleTerm1 = ((float)factorial(n) /
              (factorial(n - i) * factorial(i)))
                                  * aPow * xPow;
            System.out.println("MiddleTerm = "
                                 + middleTerm1);
        }
        else {
             
            // If n is odd
 
            // calculating the middle term
            i = (n - 1) / 2;
            j = (n + 1) / 2;
 
            // calculating the value of A to the
            // power k and X to the power k
            aPow = (int)Math.pow(A, n - i);
            xPow = (int)Math.pow(X, i);
     
            middleTerm1 = ((float)factorial(n) /
               (factorial(n - i) * factorial(i)))
                                   * aPow * xPow;
     
            // calculating the value of A to the
            // power k and X to the power k
            aPow = (int)Math.pow(A, n - j);
            xPow = (int)Math.pow(X, j);
     
            middleTerm2 = ((float)factorial(n) /
               (factorial(n - j) * factorial(j)))
                                   * aPow * xPow;
 
            System.out.println("MiddleTerm1 = "
                                  + middleTerm1);
                   
            System.out.println("MiddleTerm2 = "
                                  + middleTerm2);
        }
    }
 
    // Driver code
    public static void main(String[] args)
    {
        int n = 6, A = 2, X = 4;
 
        // calling the function
        findmiddle(A, X, n);
    }
}


Python3




# Python3 program to find the middle term
# in binomial expansion series.
import math
 
# function to calculate
# factorial of a number
def factorial(n) :
     
    fact = 1
    for i in range(1, n+1) :
        fact = fact * i
 
    return fact;
 
# Function to find middle term in
# binomial expansion series.
def findMiddleTerm(A, X, n) :
 
    if (n % 2 == 0) :
         
        # If n is even
         
        # calculating the middle term
        i = int(n / 2)
 
        # calculating the value of A to
        # the power k and X to the power k
        aPow = int(math.pow(A, n - i))
        xPow = int(math.pow(X, i))
 
        middleTerm1 = ((math.factorial(n) /
                       (math.factorial(n - i)
                       * math.factorial(i)))
                       * aPow * xPow)
                                 
        print ("MiddleTerm = {}" .
                     format(middleTerm1))
 
    else :
 
        # If n is odd
         
        # calculating the middle term
        i = int((n - 1) / 2)
        j = int((n + 1) / 2)
 
        # calculating the value of A to the
        # power k and X to the power k
        aPow = int(math.pow(A, n - i))
        xPow = int(math.pow(X, i))
 
        middleTerm1 = ((math.factorial(n)
                    / (math.factorial(n - i)
                    * math.factorial(i)))
                        * aPow * xPow)
 
        # calculating the value of A to the
        # power k and X to the power k
        aPow = int(math.pow(A, n - j))
        xPow = int(math.pow(X, j))
 
        middleTerm2 = ((math.factorial(n)
                   / (math.factorial(n - j)
                   * math.factorial(j)))
                      * aPow * xPow)
 
        print ("MiddleTerm1 = {}" .
               format(int(middleTerm1)))
                         
        print ("MiddleTerm2 = {}" .
               format(int(middleTerm2)))
 
# Driver code
n = 5
A = 2
X = 3
 
# function call
findMiddleTerm(A, X, n)
 
# This code is contributed by
# manishshaw1.


C#




// C# program to find the middle term
// in binomial expansion series.
using System;
 
class GFG {
 
    // function to calculate factorial
    // of a number
    static int factorial(int n)
    {
        int fact = 1, i;
        if (n == 0)
            return 1;
        for (i = 1; i <= n; i++)
            fact *= i;
             
        return fact;
    }
     
    // Function to find middle term in
    // binomial expansion series.
    static void findmiddle(int A, int X, int n)
    {
        int i, j, aPow, xPow;
        float middleTerm1, middleTerm2;
 
        if (n % 2 == 0)
        {
            // If n is even
             
            // calculating the middle term
            i = n / 2;
 
            // calculating the value of A to
            // the power k and X to the power k
            aPow = (int)Math.Pow(A, n - i);
            xPow = (int)Math.Pow(X, i);
     
            middleTerm1 = ((float)factorial(n) /
            (factorial(n - i) * factorial(i)))
                                * aPow * xPow;
            Console.WriteLine("MiddleTerm = "
                                + middleTerm1);
        }
        else {
             
            // If n is odd
 
            // calculating the middle term
            i = (n - 1) / 2;
            j = (n + 1) / 2;
 
            // calculating the value of A to the
            // power k and X to the power k
            aPow = (int)Math.Pow(A, n - i);
            xPow = (int)Math.Pow(X, i);
     
            middleTerm1 = ((float)factorial(n) /
            (factorial(n - i) * factorial(i)))
                                * aPow * xPow;
     
            // calculating the value of A to the
            // power k and X to the power k
            aPow = (int)Math.Pow(A, n - j);
            xPow = (int)Math.Pow(X, j);
     
            middleTerm2 = ((float)factorial(n) /
            (factorial(n - j) * factorial(j)))
                                * aPow * xPow;
 
            Console.WriteLine("MiddleTerm1 = "
                                + middleTerm1);
                 
            Console.WriteLine("MiddleTerm2 = "
                                + middleTerm2);
        }
    }
 
    // Driver code
    public static void Main()
    {
        int n = 5, A = 2, X = 3;
 
        // calling the function
        findmiddle(A, X, n);
    }
}
 
// This code is contributed by anuj_67.


PHP




<?php
// PHP program to find the middle term
// in binomial expansion series.
 
// function to calculate
// factorial of a number
function factorial(int $n)
{
    $fact = 1;
    for($i = 1; $i <= $n; $i++)
        $fact *= $i;
         
    return $fact;
}
 
// Function to find middle term in
// binomial expansion series.
function findMiddleTerm($A, $X, $n)
{
    $i; $j;
    $aPow; $xPow;
    $middleTerm1;
    $middleTerm2;
 
    if ($n % 2 == 0)
    {
         
        // If n is even
        // calculating the middle term
        $i = $n / 2;
 
        // calculating the value of A to
        // the power k and X to the power k
        $aPow = pow($A, $n - i);
        $xPow = pow($X, $i);
 
        $middleTerm1 = $factorial($n) /
        (factorial($n - $i) * factorial($i))
                            * $aPow * $xPow;
                             
        echo "MiddleTerm = ","\n",
            $middleTerm1 ;
    }
    else
    {
 
        // If n is odd
         
        // calculating the middle term
        $i = ($n - 1) / 2;
        $j = ($n + 1) / 2;
 
        // calculating the value of A to the
        // power k and X to the power k
        $aPow = pow($A, $n - $i);
        $xPow = pow($X, $i);
 
        $middleTerm1 = ((float)factorial($n) /
        (factorial($n - $i) * factorial($i)))
                            * $aPow * $xPow;
 
        // calculating the value of A to the
        // power k and X to the power k
        $aPow = pow($A, $n - $j);
        $xPow = pow($X, $j);
 
        $middleTerm2 = factorial($n) /
        (factorial($n - $j) * factorial($j))
                            * $aPow * $xPow;
 
        echo "MiddleTerm1 = "
                    , $middleTerm1,"\n" ;
                     
        echo "MiddleTerm2 = "
                    , $middleTerm2 ;
    }
}
 
    // Driver code
    $n = 5;
    $A = 2;
    $X = 3;
     
    // function call
    findMiddleTerm($A, $X, $n);
 
// This code is contributed by Vishal Tripathi.
?>


Javascript




<script>
 
// JavaScript program to find the middle term
// in binomial expansion series.
 
// function to calculate
// factorial of a number
function factorial(n)
{
    let fact = 1;
    for (let i = 1; i <= n; i++)
        fact *= i;
         
    return fact;
}
 
// Function to find middle term in
// binomial expansion series.
function findMiddleTerm(A, X, n)
{
    let i, j, aPow, xPow;
    let middleTerm1, middleTerm2;
 
    if (n % 2 == 0)
    {
        // If n is even
         
        // calculating the middle term
        i = Math.floor(n / 2);
 
        // calculating the value of A to
        // the power k and X to the power k
        aPow = Math.floor(Math.pow(A, n - i));
        xPow = Math.floor(Math.pow(X, i));
 
        middleTerm1 = Math.floor(factorial(n) /
        (factorial(n - i) * factorial(i)))
                            * aPow * xPow;
                                 
        document.write("MiddleTerm = "
            + middleTerm1 + "<br>");
    }
    else {
 
        // If n is odd
         
        // calculating the middle term
        i = Math.floor((n - 1) / 2);
        j = Math.floor((n + 1) / 2);
 
        // calculating the value of A to the
        // power k and X to the power k
        aPow = Math.floor(Math.pow(A, n - i));
        xPow = Math.floor(Math.pow(X, i));
 
        middleTerm1 = Math.floor(factorial(n) /
        (factorial(n - i) * factorial(i)))
                            * aPow * xPow;
 
        // calculating the value of A to the
        // power k and X to the power k
        aPow = Math.floor(Math.pow(A, n - j));
        xPow = Math.floor(Math.pow(X, j));
 
        middleTerm2 = Math.floor(factorial(n) /
        (factorial(n - j) * factorial(j)))
                            * aPow * xPow;
 
        document.write("MiddleTerm1 = "
                    + middleTerm1 + "<br>");
                         
        document.write("MiddleTerm2 = "
                    + middleTerm2 + "<br>");
    }
}
 
// Driver code
 
    let n = 5, A = 2, X = 3;
     
    // function call
    findMiddleTerm(A, X, n);
 
// This code is contributed by Surbhi Tyagi.
 
</script>


Output: 

MiddleTerm1 = 720
MiddleTerm2 = 1080

 

Time Complexity: O(n)
Auxiliary Space: O(1)

Feeling lost in the world of random DSA topics, wasting time without progress? It’s time for a change! Join our DSA course, where we’ll guide you on an exciting journey to master DSA efficiently and on schedule.
Ready to dive in? Explore our Free Demo Content and join our DSA course, trusted by over 100,000 neveropen!

RELATED ARTICLES

Most Popular

Recent Comments