Given a positive integer N, the task is to find the average of the fourth powers of the first N natural numbers.
Examples:
Input: N = 3
Output: 32.6667
Explanation:
The sum of the fourth powers of the first N natural numbers = 14 + 24 + 34 = 1 + 16 + 81 = 98.
Therefore, the average = 98 / 3 = 32.6667.Input: N = 5
Output: 12
Naive Approach: The simplest approach to solve the given problem is to find the sum of the fourth powers of first N natural numbers and print its value when divided by N.
Below is the implementation of the above approach:
C++
// C++ program for the above approach #include <bits/stdc++.h> using namespace std; // Function to find the average of the // fourth power of first N natural numbers double findAverage( int N) { // Stores the sum of the fourth // powers of first N natural numbers double S = 0; // Calculate the sum of fourth power for ( int i = 1; i <= N; i++) { S += i * i * i * i; } // Return the average return S / N; } // Driver Code int main() { int N = 3; cout << findAverage(N); return 0; } |
Java
// Java program for the above approach class GFG{ // Function to find the average of the // fourth power of first N natural numbers static double findAverage( int N) { // Stores the sum of the fourth // powers of first N natural numbers double S = 0 ; // Calculate the sum of fourth power for ( int i = 1 ; i <= N; i++) { S += i * i * i * i; } // Return the average return S / N; } // Driver code public static void main(String[] args) { int N = 3 ; System.out.println(findAverage(N)); } } // This code is contributed by abhinavjain194 |
Python3
# Python3 program for the above approach # Function to find the average of the # fourth power of first N natural numbers def findAverage(N): # Stores the sum of the fourth # powers of first N natural numbers S = 0 # Calculate the sum of fourth power for i in range ( 1 , N + 1 ): S + = i * i * i * i # Return the average return round (S / N, 4 ) # Driver Code if __name__ = = '__main__' : N = 3 print (findAverage(N)) # This code is contributed by mohit kumar 29 |
C#
// C# program for the above approach using System; class GFG{ // Function to find the average of the // fourth power of first N natural numbers static double findAverage( int N) { // Stores the sum of the fourth // powers of first N natural numbers double S = 0; // Calculate the sum of fourth power for ( int i = 1; i <= N; i++) { S += i * i * i * i; } // Return the average return S / N; } // Driver Code public static void Main() { int N = 3; Console.WriteLine(findAverage(N)); } } // This code is contriobuted by sanjoy_62 |
Javascript
<script> // javascript program for the above approach // Function to find the average of the // fourth power of first N natural numbers function findAverage(N) { // Stores the sum of the fourth // powers of first N natural numbers var S = 0; var i; // Calculate the sum of fourth power for (i = 1; i <= N; i++) { S += i * i * i * i; } // Return the average return S / N; } // Driver Code var N = 3; document.write(findAverage(N)); </script> |
32.6667
Time Complexity: O(N)
Auxiliary Space: O(1)
Efficient Approach: The above approach can also be optimized by finding the sum of the fourth powers of the first N natural numbers by the mathematical formula given below and then print its value when divided by N.
The mathematical formula is as follows:
=>
=>
=>
Below is the implementation of the above approach:
C++
// C++ program for the above approach #include <bits/stdc++.h> using namespace std; // Function to find the average of the // fourth power of first N natural numbers double findAverage( int N) { // Store the resultant average // calculated using formula double avg = ((6 * N * N * N * N) + (15 * N * N * N) + (10 * N * N) - 1) / 30.0; // Return the average return avg; } // Driver Code int main() { int N = 3; cout << findAverage(N); return 0; } |
Java
// Java program for the above approach import java.util.*; class GFG{ // Function to find the average of the // fourth power of first N natural numbers static double findAverage( int N) { // Store the resultant average // calculated using formula double avg = (( 6 * N * N * N * N) + ( 15 * N * N * N) + ( 10 * N * N) - 1 ) / 30.0 ; // Return the average return avg; } // Driver Code public static void main(String args[]) { int N = 3 ; System.out.print(findAverage(N)); } } // This code is contributed by shivanisinghss2110 |
Python3
# Python program for the above approach # Function to find the average of the # fourth power of first N natural numbers def findAverage(N): # Store the resultant average # calculated using formula avg = (( 6 * N * N * N * N) + ( 15 * N * N * N) + ( 10 * N * N) - 1 ) / 30 # Return the average return avg N = 3 print ( round (findAverage(N), 4 )) # This code is contributed by avanitrachhadiya2155 |
C#
// C# program for the above approach using System; class GFG{ // Function to find the average of the // fourth power of first N natural numbers static double findAverage( int N) { // Store the resultant average // calculated using formula double avg = ((6 * N * N * N * N) + (15 * N * N * N) + (10 * N * N) - 1) / 30.0; // Return the average return avg; } // Driver Code public static void Main() { int N = 3; Console.WriteLine(findAverage(N)); } } // This code is contributed by ukasp |
Javascript
<script> // JavaScript program for the above approach // Function to find the average of the // fourth power of first N natural numbers function findAverage( N) { // Store the resultant average // calculated using formula let avg = ((6 * N * N * N * N) + (15 * N * N * N) + (10 * N * N) - 1) / 30.0; // Return the average return avg; } // Driver Code let N = 3; document.write( findAverage(N).toFixed(4)); // This code is contributed by G.Sravan Kumar (171FA07058) </script> |
32.6667
Time Complexity: O(1)
Auxiliary Space: O(1)
Ready to dive in? Explore our Free Demo Content and join our DSA course, trusted by over 100,000 neveropen!