Tuesday, November 19, 2024
Google search engine
HomeData Modelling & AIMean of fourth powers of first N natural numbers

Mean of fourth powers of first N natural numbers

Given a positive integer N, the task is to find the average of the fourth powers of the first N natural numbers.

Examples:

Input: N = 3
Output: 32.6667
Explanation:
The sum of the fourth powers of the first N natural numbers = 14 + 24 + 34 = 1 + 16 + 81 = 98.
Therefore, the average = 98 / 3 = 32.6667.

Input: N = 5
Output: 12

Naive Approach: The simplest approach to solve the given problem is to find the sum of the fourth powers of first N natural numbers and print its value when divided by N.

Below is the implementation of the above approach:

C++




// C++ program for the above approach
 
#include <bits/stdc++.h>
using namespace std;
 
// Function to find the average of the
// fourth power of first N natural numbers
double findAverage(int N)
{
    // Stores the sum of the fourth
    // powers of first N natural numbers
    double S = 0;
 
    // Calculate the sum of fourth power
    for (int i = 1; i <= N; i++) {
        S += i * i * i * i;
    }
 
    // Return the average
    return S / N;
}
 
// Driver Code
int main()
{
    int N = 3;
    cout << findAverage(N);
 
    return 0;
}


Java




// Java program for the above approach
class GFG{
 
// Function to find the average of the
// fourth power of first N natural numbers
static double findAverage(int N)
{
     
    // Stores the sum of the fourth
    // powers of first N natural numbers
    double S = 0;
 
    // Calculate the sum of fourth power
    for(int i = 1; i <= N; i++)
    {
        S += i * i * i * i;
    }
 
    // Return the average
    return S / N;
}
 
// Driver code
public static void main(String[] args)
{
    int N = 3;
 
    System.out.println(findAverage(N));
}
}
 
// This code is contributed by abhinavjain194


Python3




# Python3 program for the above approach
 
# Function to find the average of the
# fourth power of first N natural numbers
def findAverage(N):
 
    # Stores the sum of the fourth
    # powers of first N natural numbers
    S = 0
 
    # Calculate the sum of fourth power
    for i in range(1, N + 1):
        S += i * i * i * i
 
    # Return the average
    return round(S / N, 4)
 
# Driver Code
if __name__ == '__main__':
     
    N = 3
    print(findAverage(N))
 
# This code is contributed by mohit kumar 29


C#




// C# program for the above approach
using System;
 
class GFG{
 
// Function to find the average of the
// fourth power of first N natural numbers
static double findAverage(int N)
{
     
    // Stores the sum of the fourth
    // powers of first N natural numbers
    double S = 0;
  
    // Calculate the sum of fourth power
    for(int i = 1; i <= N; i++)
    {
        S += i * i * i * i;
    }
  
    // Return the average
    return S / N;
}
     
// Driver Code
public static void Main()
{
    int N = 3;
     
    Console.WriteLine(findAverage(N));
}
}
 
// This code is contriobuted by sanjoy_62


Javascript




<script>
 
// javascript program for the above approach
 
// Function to find the average of the
// fourth power of first N natural numbers
function findAverage(N)
{
    // Stores the sum of the fourth
    // powers of first N natural numbers
    var S = 0;
     
    var i;
    // Calculate the sum of fourth power
    for (i = 1; i <= N; i++) {
        S += i * i * i * i;
    }
 
    // Return the average
    return S / N;
}
 
// Driver Code
    var N = 3;
    document.write(findAverage(N));
 
</script>


Output: 

32.6667

 

Time Complexity: O(N)
Auxiliary Space: O(1)

Efficient Approach: The above approach can also be optimized by finding the sum of the fourth powers of the first N natural numbers by the mathematical formula given below and then print its value when divided by N.

The mathematical formula is as follows:

=> Sum = \frac{(6N^5 + 15N^4 + 10N^3 - N)}{30}

=> Average = \frac{(6N^5 + 15N^4 + 10N^3 - N)}{30*N}

=> Average = \frac{(6N^4 + 15N^3 + 10N^2 - 1)}{30}

Below is the implementation of the above approach:

C++




// C++ program for the above approach
 
#include <bits/stdc++.h>
using namespace std;
 
// Function to find the average of the
// fourth power of first N natural numbers
double findAverage(int N)
{
    // Store the resultant average
    // calculated using formula
    double avg = ((6 * N * N * N * N)
                  + (15 * N * N * N)
                  + (10 * N * N) - 1)
                 / 30.0;
 
    // Return the average
    return avg;
}
 
// Driver Code
int main()
{
    int N = 3;
    cout << findAverage(N);
 
    return 0;
}


Java




// Java program for the above approach
import java.util.*;
 
class GFG{
     
// Function to find the average of the
// fourth power of first N natural numbers
static double findAverage(int N)
{
     
    // Store the resultant average
    // calculated using formula
    double avg = ((6 * N * N * N * N) +
                 (15 * N * N * N) +
                 (10 * N * N) - 1) / 30.0;
 
    // Return the average
    return avg;
}
 
// Driver Code
public static void main(String args[])
{
    int N = 3;
     
    System.out.print(findAverage(N));
}
}
 
// This code is contributed by shivanisinghss2110


Python3




# Python program for the above approach
 
# Function to find the average of the
# fourth power of first N natural numbers
def findAverage(N):
   
      # Store the resultant average
    # calculated using formula
    avg = ((6 * N * N * N * N) + (15 * N * N * N) + (10 * N * N) - 1) / 30
     
    # Return the average
    return avg
 
N = 3
print(round(findAverage(N),4))
     
 
# This code is contributed by avanitrachhadiya2155


C#




// C# program for the above approach
using System;
 
class GFG{
     
// Function to find the average of the
// fourth power of first N natural numbers
static double findAverage(int N)
{
     
    // Store the resultant average
    // calculated using formula
    double avg = ((6 * N * N * N * N) +
                 (15 * N * N * N) +
                 (10 * N * N) - 1) / 30.0;
 
    // Return the average
    return avg;
}
 
// Driver Code
public static void Main()
{
    int N = 3;
    Console.WriteLine(findAverage(N));
}
}
 
// This code is contributed by ukasp


Javascript




<script>
 
    // JavaScript program for the above approach
 
// Function to find the average of the
// fourth power of first N natural numbers
function findAverage( N)
{
    // Store the resultant average
    // calculated using formula
    let avg = ((6 * N * N * N * N)
                + (15 * N * N * N)
                + (10 * N * N) - 1)
                / 30.0;
 
    // Return the average
    return avg;
}
 
// Driver Code
 
    let N = 3;
    document.write( findAverage(N).toFixed(4));
 
 
// This code is contributed by G.Sravan Kumar (171FA07058)
 
</script>


Output: 

32.6667

 

Time Complexity: O(1)
Auxiliary Space: O(1)

Feeling lost in the world of random DSA topics, wasting time without progress? It’s time for a change! Join our DSA course, where we’ll guide you on an exciting journey to master DSA efficiently and on schedule.
Ready to dive in? Explore our Free Demo Content and join our DSA course, trusted by over 100,000 neveropen!

RELATED ARTICLES

Most Popular

Recent Comments