Given a Binary Tree having positive and negative nodes, the task is to find the maximum sum of leaf nodes among all level of the given binary tree.
Examples:
Input: 4 / \ 2 -5 / \ -1 3 Output: 2 Sum of all leaves at 0th level is 0. Sum of all leaves at 1st level is -5. Sum of all leaves at 2nd level is 2. Hence maximum sum is 2. Input: 1 / \ 2 3 / \ \ 4 5 8 / \ 6 7 Output: 13
Approach: The idea to solve the above problem is to do level order traversal of tree. While doing traversal, process nodes of different level separately. For every level being processed, compute the sum of leaf nodes in the level and keep track of the maximum sum.
Below is the implementation of the above approach:
C++
// C++ implementation of the approach #include <bits/stdc++.h> using namespace std; // A binary tree node has data, pointer to left child // and a pointer to right child struct Node { int data; struct Node *left, *right; }; // Function to return the maximum sum of leaf nodes // at any level in tree using level order traversal int maxLeafNodesSum( struct Node* root) { // Base case if (root == NULL) return 0; // Initialize result int result = 0; // Do Level order traversal keeping track // of the number of nodes at every level queue<Node*> q; q.push(root); while (!q.empty()) { // Get the size of queue when the level order // traversal for one level finishes int count = q.size(); // Iterate for all the nodes in the queue currently int sum = 0; while (count--) { // Dequeue an node from queue Node* temp = q.front(); q.pop(); // Add leaf node's value to current sum if (temp->left == NULL && temp->right == NULL) sum = sum + temp->data; // Enqueue left and right children of // dequeued node if (temp->left != NULL) q.push(temp->left); if (temp->right != NULL) q.push(temp->right); } // Update the maximum sum of leaf nodes value result = max(sum, result); } return result; } // Helper function that allocates a new node with the // given data and NULL left and right pointers struct Node* newNode( int data) { struct Node* node = new Node; node->data = data; node->left = node->right = NULL; return (node); } // Driver code int main() { struct Node* root = newNode(1); root->left = newNode(2); root->right = newNode(3); root->left->left = newNode(4); root->left->right = newNode(5); root->right->right = newNode(8); root->right->right->left = newNode(6); root->right->right->right = newNode(7); cout << maxLeafNodesSum(root) << endl; return 0; } |
Java
// Java implementation of the approach import java.util.*; class GFG { // A binary tree node has data, // pointer to left child and // a pointer to right child static class Node { int data; Node left, right; }; // Function to return the maximum sum // of leaf nodes at any level in tree // using level order traversal static int maxLeafNodesSum(Node root) { // Base case if (root == null ) return 0 ; // Initialize result int result = 0 ; // Do Level order traversal keeping track // of the number of nodes at every level Queue<Node> q = new LinkedList<>(); q.add(root); while (!q.isEmpty()) { // Get the size of queue when the level order // traversal for one level finishes int count = q.size(); // Iterate for all the nodes // in the queue currently int sum = 0 ; while (count-- > 0 ) { // Dequeue an node from queue Node temp = q.peek(); q.remove(); // Add leaf node's value to current sum if (temp.left == null && temp.right == null ) sum = sum + temp.data; // Enqueue left and right children of // dequeued node if (temp.left != null ) q.add(temp.left); if (temp.right != null ) q.add(temp.right); } // Update the maximum sum of leaf nodes value result = Math.max(sum, result); } return result; } // Helper function that allocates a new node with the // given data and null left and right pointers static Node newNode( int data) { Node node = new Node(); node.data = data; node.left = node.right = null ; return (node); } // Driver code public static void main(String[] args) { Node root = newNode( 1 ); root.left = newNode( 2 ); root.right = newNode( 3 ); root.left.left = newNode( 4 ); root.left.right = newNode( 5 ); root.right.right = newNode( 8 ); root.right.right.left = newNode( 6 ); root.right.right.right = newNode( 7 ); System.out.println(maxLeafNodesSum(root)); } } // This code is contributed by Rajput-Ji |
Python3
# Python3 implementation of the approach # A binary tree node has data, # pointer to left child and # a pointer to right child # Helper function that allocates # a new node with the given data # and None left and right pointers class newNode: def __init__( self , data): self .data = data self .left = None self .right = None # Function to return the maximum sum # of leaf nodes at any level in tree # using level order traversal def maxLeafNodesSum(root): # Base case if (root = = None ): return 0 # Initialize result result = 0 # Do Level order traversal keeping track # of the number of nodes at every level q = [] q.append(root) while ( len (q)): # Get the size of queue when the level order # traversal for one level finishes count = len (q) # Iterate for all the nodes # in the queue currently sum = 0 while (count): # Dequeue an node from queue temp = q[ 0 ] q.pop( 0 ) # Add leaf node's value to current sum if (temp.left = = None and temp.right = = None ): sum = sum + temp.data # Enqueue left and right children of # dequeued node if (temp.left ! = None ): q.append(temp.left) if (temp.right ! = None ): q.append(temp.right) count - = 1 # Update the maximum sum # of leaf nodes value result = max ( sum , result) return result # Driver code root = newNode( 1 ) root.left = newNode( 2 ) root.right = newNode( 3 ) root.left.left = newNode( 4 ) root.left.right = newNode( 5 ) root.right.right = newNode( 8 ) root.right.right.left = newNode( 6 ) root.right.right.right = newNode( 7 ) print (maxLeafNodesSum(root)) # This code is contributed by SHUBHAMSINGH10 |
C#
// C# implementation of the approach using System; using System.Collections.Generic; class GFG { // A binary tree node has data, // pointer to left child and // a pointer to right child class Node { public int data; public Node left, right; }; // Function to return the maximum sum // of leaf nodes at any level in tree // using level order traversal static int maxLeafNodesSum(Node root) { // Base case if (root == null ) return 0; // Initialize result int result = 0; // Do Level order traversal keeping track // of the number of nodes at every level Queue<Node> q = new Queue<Node>(); q.Enqueue(root); while (q.Count != 0) { // Get the size of queue when the level order // traversal for one level finishes int count = q.Count; // Iterate for all the nodes // in the queue currently int sum = 0; while (count-- > 0) { // Dequeue an node from queue Node temp = q.Peek(); q.Dequeue(); // Add leaf node's value to current sum if (temp.left == null && temp.right == null ) sum = sum + temp.data; // Enqueue left and right children of // dequeued node if (temp.left != null ) q.Enqueue(temp.left); if (temp.right != null ) q.Enqueue(temp.right); } // Update the maximum sum of leaf nodes value result = Math.Max(sum, result); } return result; } // Helper function that allocates a new node with the // given data and null left and right pointers static Node newNode( int data) { Node node = new Node(); node.data = data; node.left = node.right = null ; return (node); } // Driver code public static void Main(String[] args) { Node root = newNode(1); root.left = newNode(2); root.right = newNode(3); root.left.left = newNode(4); root.left.right = newNode(5); root.right.right = newNode(8); root.right.right.left = newNode(6); root.right.right.right = newNode(7); Console.WriteLine(maxLeafNodesSum(root)); } } // This code is contributed by PrinciRaj1992 |
Javascript
<script> // JavaScript implementation of the approach // A binary tree node has data, // pointer to left child and // a pointer to right child class Node { constructor(data) { this .left = null ; this .right = null ; this .data = data; } } // Function to return the maximum sum // of leaf nodes at any level in tree // using level order traversal function maxLeafNodesSum(root) { // Base case if (root == null ) return 0; // Initialize result let result = 0; // Do Level order traversal keeping track // of the number of nodes at every level let q = []; q.push(root); while (q.length > 0) { // Get the size of queue when the level order // traversal for one level finishes let count = q.length; // Iterate for all the nodes // in the queue currently let sum = 0; while (count-- > 0) { // Dequeue an node from queue let temp = q[0]; q.shift(); // Add leaf node's value to current sum if (temp.left == null && temp.right == null ) sum = sum + temp.data; // Enqueue left and right children of // dequeued node if (temp.left != null ) q.push(temp.left); if (temp.right != null ) q.push(temp.right); } // Update the maximum sum of leaf nodes value result = Math.max(sum, result); } return result; } // Helper function that allocates a new node with the // given data and null left and right pointers function newNode(data) { let node = new Node(data); return (node); } let root = newNode(1); root.left = newNode(2); root.right = newNode(3); root.left.left = newNode(4); root.left.right = newNode(5); root.right.right = newNode(8); root.right.right.left = newNode(6); root.right.right.right = newNode(7); document.write(maxLeafNodesSum(root)); </script> |
13
Time complexity: O(N) where N is the number of node in the given binary tree.
Auxiliary Space: O(N) due to queue data structure.
Ready to dive in? Explore our Free Demo Content and join our DSA course, trusted by over 100,000 neveropen!