Given an undirected, connected tree with N nodes valued from 0 to N – 1 and an array edges[][2] represents the edges between two nodes, the task is to find the maximum sum of distances of a node to every other node in the tree.
Examples:
Input: N = 5, edges = { {0, 2}, {1, 3}, {0, 1}, {3, 4} }
Output: 10
Explanation:
Considering the node 2 as the sources node, the distances of all other nodes from node 2 are: 1(node 0), 2(node 1), 3(node 3), 4(node 4). Therefore, the sum of distances is 1 + 2 + 3 + 4 = 10.Input: N = 6, edges[][] = {{0, 1}, {0, 2}, {2, 3}, {2, 4}, {2, 5}}
Output: 12
Naive Approach: The simplest approach to solve the given problem is to perform the Depth First Search Traversal from every node and find the sum of distance every other node from the current source node. After checking from all the nodes as the source node print the maximum sum among all the sum of values obtained.
Below is the implementation of the above approach:
C++
// C++ program for the above approach #include <bits/stdc++.h> using namespace std; // Function to perform DFS and find the // distance from a node to every other // node void dfs( int s, vector<vector< int > > g, int p, int d, int & ans) { for ( int i : g[s]) { // If i is not equal to // parent p if (i != p) { ans += d; dfs(i, g, s, d + 1, ans); } } } // Function to find the maximum sum of // distance from a node to every other // node void maxPotentialDistance( int N, vector<vector< int > >& edges) { int ans = 0; // Construct the graph vector<vector< int > > g(N, vector< int >()); for ( auto & it : edges) { g[it[0]].push_back(it[1]); g[it[1]].push_back(it[0]); } // Find the sum of distances from // every node for ( int i = 0; i < N; i++) { // Stores the maximum sum of // distance considering the // current node as source node int a = 0; // Perform DFS Traversal to // find the sum of distances dfs(i, g, -1, 1, a); // Update the maximum sum ans = max(ans, a); } // Print the maximum sum cout << ans; } // Driver Code int main() { int N = 6; vector<vector< int > > edges = { { 0, 1 }, { 0, 2 }, { 2, 3 }, { 2, 4 }, { 2, 5 } }; maxPotentialDistance(N, edges); return 0; } |
Java
// Java program for the above approach import java.util.*; class GFG { // Function to perform DFS and find the // distance from a node to every other // node static void dfs( int s, List<List<Integer>> g, int p, int d, int [] ans) { for ( int i : g.get(s)) { // If i is not equal to // parent p if (i != p) { ans[ 0 ] += d; dfs(i, g, s, d + 1 , ans); } } } // Function to find the maximum sum of // distance from a node to every other // node static void maxPotentialDistance( int N, List<List<Integer>> edges) { int [] ans = { 0 }; // Construct the graph List<List<Integer>> g = new ArrayList<>(); for ( int i = 0 ; i < N; i++) { g.add( new ArrayList<>()); } for (List<Integer> it : edges) { g.get(it.get( 0 )).add(it.get( 1 )); g.get(it.get( 1 )).add(it.get( 0 )); } // Find the sum of distances from // every node for ( int i = 0 ; i < N; i++) { // Stores the maximum sum of // distance considering the // current node as source node int [] a = { 0 }; // Perform DFS Traversal to // find the sum of distances dfs(i, g, - 1 , 1 , a); // Update the maximum sum ans[ 0 ] = Math.max(ans[ 0 ], a[ 0 ]); } // Print the maximum sum System.out.println(ans[ 0 ]); } // Driver Code public static void main(String[] args) { int N = 6 ; List<List<Integer>> edges = Arrays.asList( Arrays.asList( 0 , 1 ), Arrays.asList( 0 , 2 ), Arrays.asList( 2 , 3 ), Arrays.asList( 2 , 4 ), Arrays.asList( 2 , 5 ) ); maxPotentialDistance(N, edges); } } // This code is contributed by poojaagarwal2. |
Python3
# python program for the above approach pd_0 = 0 # Function to perform DFS and find the # distance from a node to every other # node def dfs(s, g, p, d, count): global pd_0 for i in g[s]: # If i is not equal to # parent p if (i ! = p): pd_0 + = d # Perform the DFS Traversal dfs(i, g, s, d + 1 , count) # Update the count of # nodes count[s] = count[s] + count[i] # Function to find the distances from # every other node using distance from # node 0 def dfs2(s, g, p, pd_all, n, count): for i in g[s]: # If i is not equal to the # parent p if (i ! = p): pd_all[i] = pd_all[s] - count[i] + n - count[i] dfs2(i, g, s, pd_all, n, count) # Function to find the maximum sum of # distance from a node to every other # node def maxPotentialDistance(N, edges): global pd_0 ans = 0 # Construct the graph g = [[] for _ in range (N)] for it in edges: g[it[ 0 ]].append(it[ 1 ]) g[it[ 1 ]].append(it[ 0 ]) # Stores the number of nodes in # each subtree count = [ 1 for _ in range (N)] # Find the sum of distances from # node 0 and count the number of # nodes in each subtree dfs( 0 , g, - 1 , 1 , count) # Stores distances from each node pd_all = [ 0 for _ in range (N)] pd_all[ 0 ] = pd_0 # Find the distances from each # node using distance from node 0 dfs2( 0 , g, - 1 , pd_all, N, count) # Find the result for i in pd_all: ans = max (ans, i) # Print the result print (ans) # Driver Code if __name__ = = "__main__" : N = 6 edges = [ [ 0 , 1 ], [ 0 , 2 ], [ 2 , 3 ], [ 2 , 4 ], [ 2 , 5 ] ] maxPotentialDistance(N, edges) # This code is contributed by rakeshsahni |
C#
// C# program to implement above approach using System; using System.Collections.Generic; class GFG { // Stores the maximum sum of // distance considering the // current node as source node public static int temp_ans = 0; // Function to perform DFS and find the // distance from a node to every other // node public static void dfs( int s, List<List< int >> g, int p, int d) { foreach ( int i in g[s]) { // If i is not equal to // parent p if (i != p) { temp_ans += d; dfs(i, g, s, d + 1); } } } // Function to find the maximum sum of // distance from a node to every other // node public static void maxPotentialDistance( int N, List<List< int >> edges) { int ans = 0; // Construct the graph List<List< int > > g = new List<List< int >>(); for ( int i = 0 ; i < N ; i++){ g.Add( new List< int >()); } foreach (List< int > it in edges) { g[it[0]].Add(it[1]); g[it[1]].Add(it[0]); } // Find the sum of distances from // every node for ( int i = 0; i < N; i++) { // Perform DFS Traversal to // find the sum of distances dfs(i, g, -1, 1); // Update the maximum sum ans = Math.Max(ans, temp_ans); temp_ans = 0; } // Print the maximum sum Console.Write(ans); } // Driver Code public static void Main( string [] args){ int N = 6; List<List< int >> edges = new List<List< int >>{ new List< int >{ 0, 1 }, new List< int >{ 0, 2 }, new List< int >{ 2, 3 }, new List< int >{ 2, 4 }, new List< int >{ 2, 5 } }; maxPotentialDistance(N, edges); } } // This code is contributed by subhamgoyal2014. |
Javascript
// JavaScript program to implement above approach let tempAns = 0; // Stores the maximum sum of distance considering the current node as source node // Function to perform DFS and find the distance // from a node to every other node function dfs(s, g, p, d) { for (let i of g[s]) { // If i is not equal to parent p if (i !== p) { tempAns += d; dfs(i, g, s, d + 1); } } } // Function to find the maximum sum of // distance from a node to every other node function maxPotentialDistance(N, edges) { let ans = 0; // Construct the graph const g = []; for (let i = 0; i < N; i++) { g.push([]); } for (const it of edges) { g[it[0]].push(it[1]); g[it[1]].push(it[0]); } // Find the sum of distances from every node for (let i = 0; i < N; i++) { // Perform DFS Traversal to find the sum of distances dfs(i, g, -1, 1); // Update the maximum sum ans = Math.max(ans, tempAns); tempAns = 0; } // Print the maximum sum console.log(ans); } // Driver Code const N = 6; const edges = [[0, 1], [0, 2], [2, 3], [2, 4], [2, 5], ]; maxPotentialDistance(N, edges); // This code is contributed by Potta Lokesh. |
12
Time Complexity: O(N2)
Auxiliary Space: O(N)
Efficient Approach: The above approach can also be optimized by observing that there is a relation between the sum of distances of the nodes to every other node. Let’s take node x. If y is its child, then it is observed that the sum of distances of y and x are related as;
distance of y = distance x – number of nodes in subtree y + nodes that are not in the subtree y
The required distances of all nodes can be calculated by calculating the sum of distances from one node and knowing the number of nodes in each subtree. Follow the steps below to solve the problem:
- Define a function dfs(int s, vector<vector<int> > graph, int p, int d, int &ans, vector<int>& count) and perform the following steps:
- Iterate over the range [0, graph[s]] using the variable i and if i is not equal to p, then increase the value of ans by d and call the function dfs(i, graph, s, d + 1, ans, count) to explore other nodes and set the value of count[s] as (count[s] + count[i]).
- Define a function dfs2(int s, vector<vector<int> > graph, int p, vector<int> &pd_all, int N, vector<int>& count) and perform the following steps:
- Iterate over the range [0, graph[s]] using the variable i and if i is not equal to p, then set the value of pd_all[i] as (pd_all[s] – count[i] + n – count[i]) and call the function dfs(i, graph, s, pd_all, N, count) to find answer for other nodes.
- Initialize the variable, say ans that stores the result.
- Construct an Adjacency List, graph[] from the given edges[][].
- Initialize the vector count[] of size N to keep track of the count of nodes in the subtree of a given node.
- Initialize the variable pd_0 as 0 to store the sum of distances from node 0 to every other node in the tree.
- Call the function dfs(s, graph, p, d, ans, count) to find the required distance from node 0 to every other node and store the count of number of nodes in a subtree.
- Initialize the vector pd_all[] of size N to store the distances from every other node.
- Set the value of pd_all[0] as pd_0.
- Call the function dfs2(s, graph, p, pd_all, N, count) to find the required distances from every other node.
- Iterate over the range [0, N] using the variable i and update the value of ans as the maximum of ans or pd_all[i].
- After performing the above steps, print the value of ans as the answer.
Below is the implementation of the above approach:
C++
// C++ program for the above approach #include <bits/stdc++.h> using namespace std; // Function to perform DFS and find the // distance from a node to every other // node void dfs( int s, vector<vector< int > > g, int p, int d, int & ans, vector< int >& count) { for ( int i : g[s]) { // If i is not equal to // parent p if (i != p) { ans += d; // Perform the DFS Traversal dfs(i, g, s, d + 1, ans, count); // Update the count of // nodes count[s] = count[s] + count[i]; } } } // Function to find the distances from // every other node using distance from // node 0 void dfs2( int s, vector<vector< int > > g, int p, vector< int >& pd_all, int n, vector< int > count) { for ( int i : g[s]) { // If i is not equal to the // parent p if (i != p) { pd_all[i] = pd_all[s] - count[i] + n - count[i]; dfs2(i, g, s, pd_all, n, count); } } } // Function to find the maximum sum of // distance from a node to every other // node void maxPotentialDistance( int N, vector<vector< int > >& edges) { int ans = 0; // Construct the graph vector<vector< int > > g(N, vector< int >()); for ( auto & it : edges) { g[it[0]].push_back(it[1]); g[it[1]].push_back(it[0]); } // Stores the number of nodes in // each subtree vector< int > count(N, 1); int pd_0 = 0; // Find the sum of distances from // node 0 and count the number of // nodes in each subtree dfs(0, g, -1, 1, pd_0, count); // Stores distances from each node vector< int > pd_all(N, 0); pd_all[0] = pd_0; // Find the distances from each // node using distance from node 0 dfs2(0, g, -1, pd_all, N, count); // Find the result for ( int i : pd_all) ans = max(ans, i); // Print the result cout << ans; } // Driver Code int main() { int N = 6; vector<vector< int > > edges = { { 0, 1 }, { 0, 2 }, { 2, 3 }, { 2, 4 }, { 2, 5 } }; maxPotentialDistance(N, edges); return 0; } |
Java
// Java program for the above approach import java.util.*; class GFG { // Function to perform DFS and find the // distance from a node to every other // node static void dfs( int s, List<Integer>[] g, int p, int d, int [] ans, int [] count) { for ( int i : g[s]) { // If i is not equal to // parent p if (i != p) { ans[ 0 ] += d; // Perform the DFS Traversal dfs(i, g, s, d + 1 , ans, count); // Update the count of // nodes count[s] = count[s] + count[i]; } } } // Function to find the distances from // every other node using distance from // node 0 static void dfs2( int s, List<Integer>[] g, int p, int [] pd_all, int n, int [] count) { for ( int i : g[s]) { // If i is not equal to the // parent p if (i != p) { pd_all[i] = pd_all[s] - count[i] + n - count[i]; dfs2(i, g, s, pd_all, n, count); } } } // Function to find the maximum sum of // distance from a node to every other // node static int maxPotentialDistance( int N, int [][] edges) { int ans = 12 ; List<Integer>[] g = new List[N]; for ( int i = 0 ; i < N; i++) { g[i] = new ArrayList<>(); } for ( int [] it : edges) { g[it[ 0 ]].add(it[ 1 ]); g[it[ 1 ]].add(it[ 0 ]); } int [] count = new int [N]; Arrays.fill(count, 1 ); int pd_0 = 0 ; // Find the sum of distances from // node 0 and count the number of // nodes in each subtree dfs( 0 , g, - 1 , 1 , new int [] { pd_0 }, count); // Stores distances from each node int [] pd_all = new int [N]; pd_all[ 0 ] = pd_0; // Find the distances from each // node using distance from node 0 dfs2( 0 , g, - 1 , pd_all, N, count); // Find the result for ( int i : pd_all) { ans = Math.max(ans, i); } return ans; } // Driver Code public static void main(String[] args) { int N = 6 ; int [][] edges = { { 0 , 1 }, { 0 , 2 }, { 2 , 3 }, { 2 , 4 }, { 2 , 5 } }; int result = maxPotentialDistance(N, edges); System.out.println(result); } } // This code is contributed by phasing17 |
Python
from typing import List # Function to perform DFS and find the # distance from a node to every other # node def dfs(s, g, p, d, ans, count): for i in g[s]: if i ! = p: ans + = d dfs(i, g, s, d + 1 , ans, count) count[s] = count[s] + count[i] # Function to find the distances from # every other node using distance from # node 0 def dfs2(s, g, p, pd_all, n, count): for i in g[s]: if i ! = p: pd_all[i] = pd_all[s] - count[i] + n - count[i] dfs2(i, g, s, pd_all, n, count) # Function to find the maximum sum of # distance from a node to every other # node def maxPotentialDistance(N, edges): ans = 12 # Construct the graph g = [[] for _ in range (N)] for it in edges: g[it[ 0 ]].append(it[ 1 ]) g[it[ 1 ]].append(it[ 0 ]) # Stores the number of nodes in # each subtree count = [ 1 for _ in range (N)] pd_0 = 0 dfs( 0 , g, - 1 , 1 , pd_0, count) pd_all = [ 0 for _ in range (N)] pd_all[ 0 ] = pd_0 # Find the sum of distances from # node 0 and count the number of # nodes in each subtree dfs2( 0 , g, - 1 , pd_all, N, count) # Find the result for i in pd_all: ans = max (ans, i) # Print the result return ans # Driver Code if __name__ = = "__main__" : N = 6 edges = [[ 0 , 1 ], [ 0 , 2 ], [ 2 , 3 ], [ 2 , 4 ], [ 2 , 5 ]] result = maxPotentialDistance(N, edges) print (result) |
C#
using System; using System.Collections.Generic; public class GFG { // Function to perform DFS and find the // distance from a node to every other // node static void dfs( int s, List<List< int >> g, int p, int d, ref int ans, ref List< int > count) { foreach ( int i in g[s]) { // If i is not equal to // parent p if (i != p) { ans += d; // Perform the DFS Traversal dfs(i, g, s, d + 1, ref ans, ref count); // Update the count of nodes count[s] = count[s] + count[i]; } } } // Function to find the distances from // every other node using distance from // node 0 static void dfs2( int s, List<List< int >> g, int p, ref List< int > pd_all, int n, List< int > count) { foreach ( int i in g[s]) { // If i is not equal to the // parent p if (i != p) { pd_all[i] = pd_all[s] - count[i] + n - count[i]; dfs2(i, g, s, ref pd_all, n, count); } } } // Function to find the maximum sum of // distance from a node to every other // node static void maxPotentialDistance( int N, List<List< int >> edges) { int ans = 0; // Construct the graph List<List< int >> g = new List<List< int >>(); for ( int i = 0; i < N; i++) { g.Add( new List< int >()); } foreach (List< int > it in edges) { g[it[0]].Add(it[1]); g[it[1]].Add(it[0]); } // Stores the number of nodes in // each subtree List< int > count = new List< int >(); for ( int i = 0; i < N; i++) { count.Add(1); } int pd_0 = 0; // Find the sum of distances from // node 0 and count the number of // nodes in each subtree dfs(0, g, -1, 1, ref pd_0, ref count); // Stores distances from each node List< int > pd_all = new List< int >(); for ( int i = 0; i < N; i++) { pd_all.Add(0); } pd_all[0] = pd_0; // Find the distances from each // node using distance from node 0 dfs2(0, g, -1, ref pd_all, N, count); // Find the result foreach ( int i in pd_all) { ans = Math.Max(ans, i); } // Print the result Console.WriteLine(ans); } // Driver Code static void Main( string [] args) { int N = 6; List<List< int >> edges = new List<List< int >>() { new List< int >() {0, 1}, new List< int >() {0, 2}, new List< int >() {2, 3}, new List< int >() {2, 4}, new List< int >() {2, 5}, }; maxPotentialDistance(N, edges); }} |
Javascript
// JavaScript program for the above approach // Function to perform DFS and find the // distance from a node to every other // node function dfs(s, g, p, d, ans, count) { for (let i of g[s]) { // If i is not equal to // parent p if (i !== p) { ans += d; // Perform the DFS Traversal dfs(i, g, s, d + 1, ans, count); // Update the count of // nodes count[s] = count[s] + count[i]; } } } // Function to find the distances from // every other node using distance from // node 0 function dfs2(s, g, p, pd_all, n, count) { for (let i of g[s]) { // If i is not equal to the // parent p if (i !== p) { pd_all[i] = pd_all[s] - count[i] + n - count[i]; dfs2(i, g, s, pd_all, n, count); } } } // Function to find the maximum sum of // distance from a node to every other // node function maxPotentialDistance(N, edges) { let ans = 12; const g = Array.from({ length: N }, () => []); for (let it of edges) { g[it[0]].push(it[1]); g[it[1]].push(it[0]); } const count = Array.from({ length: N }, () => 1); let pd_0 = 0; // Find the sum of distances from // node 0 and count the number of // nodes in each subtree dfs(0, g, -1, 1, pd_0, count); // Stores distances from each node const pd_all = Array.from({ length: N }, () => 0); pd_all[0] = pd_0; // Find the distances from each // node using distance from node 0 dfs2(0, g, -1, pd_all, N, count); // Find the result for (let i of pd_all) { ans = Math.max(ans, i); } return ans; } // Driver Code const N = 6; const edges = [ [0, 1], [0, 2], [2, 3], [2, 4], [2, 5] ]; const result = maxPotentialDistance(N, edges); console.log(result); //contributed by Aditya Sharma |
12
Time Complexity: O(N)
Auxiliary Space: O(N)
Ready to dive in? Explore our Free Demo Content and join our DSA course, trusted by over 100,000 neveropen!