Given an array arr[] consisting of N integers and an integer K, the task is to find the length of the longest subsequence with a sum equal to K.
Examples:
Input: arr[] = {-4, -2, -2, -1, 6}, K = 0
Output: 3
Explanation:
The longest subsequence is of length 3 which is {-4, -2, 6} having sum 0.
Input: arr[] = {-3, 0, 1, 1, 2}, K = 1
Output: 5
Explanation: The longest subsequence is of length 5 which is {-3, 0, 1, 1, 2} having sum 1.
Naive Approach: The simplest approach to solve the problem is to generate all the possible subsequences of different lengths and check if their sum is equal to K. Out of all these subsequences with sum K, find the subsequence with the longest length.
Time complexity: O(2N)
Recursive & Backtracking Approach: The basic approach of this problem is to sort the vector and find the sum of all the possible subsequences and pick up the subsequence with the maximum length having the given sum. This can be done using Recursion and Backtracking.
Follow the steps below to solve this problem:
- Sort the given array/vector.
- Initialize a global variable max_length to 0, which stores the maximum length subset.
- For every index i in the array, call the recursion function to find out all the possible subsets with elements in the range [i, N-1] having sum K.
- Every time a subset with sum K is found, check if its size is greater than the current max_length value. If yes, then update the value of max_length.
- After all the possible subset sums are computed, return the max_length.
Below is the implementation of the above approach:
C++
// C++ Program to implement the // above approach #include <bits/stdc++.h> using namespace std; // Initialise maximum possible // length of subsequence int max_length = 0; // Store elements to compare // max_length with its size // and change the value of // max_length accordingly vector< int > store; // Store the elements of the // longest subsequence vector< int > ans; // Function to find the length // of longest subsequence void find_max_length( vector< int >& arr, int index, int sum, int k) { sum = sum + arr[index]; store.push_back(arr[index]); if (sum == k) { if (max_length < store.size()) { // Update max_length max_length = store.size(); // Store the subsequence // elements ans = store; } } for ( int i = index + 1; i < arr.size(); i++) { if (sum + arr[i] <= k) { // Recursively proceed // with obtained sum find_max_length(arr, i, sum, k); // popping elements // from back // of vector store store.pop_back(); } // if sum > 0 then we don't // required thatsubsequence // so return and continue // with earlier elements else return ; } return ; } int longestSubsequence(vector< int > arr, int n, int k) { // Sort the given array sort(arr.begin(), arr.end()); // Traverse the array for ( int i = 0; i < n; i++) { // If max_length is already // greater than or equal // than remaining length if (max_length >= n - i) break ; store.clear(); find_max_length(arr, i, 0, k); } return max_length; } // Driver code int main() { vector< int > arr{ -3, 0, 1, 1, 2 }; int n = arr.size(); int k = 1; cout << longestSubsequence(arr, n, k); return 0; } |
Java
// Java Program to implement the // above approach import java.util.*; class GFG{ // Initialise maximum possible // length of subsequence static int max_length = 0 ; // Store elements to compare // max_length with its size // and change the value of // max_length accordingly static Vector<Integer> store = new Vector<Integer>(); // Store the elements of the // longest subsequence static Vector<Integer> ans = new Vector<Integer>(); // Function to find the length // of longest subsequence static void find_max_length( int []arr, int index, int sum, int k) { sum = sum + arr[index]; store.add(arr[index]); if (sum == k) { if (max_length < store.size()) { // Update max_length max_length = store.size(); // Store the subsequence // elements ans = store; } } for ( int i = index + 1 ; i < arr.length; i++) { if (sum + arr[i] <= k) { // Recursively proceed // with obtained sum find_max_length(arr, i, sum, k); // popping elements // from back // of vector store store.remove(store.size() - 1 ); } // if sum > 0 then we don't // required thatsubsequence // so return and continue // with earlier elements else return ; } return ; } static int longestSubsequence( int []arr, int n, int k) { // Sort the given array Arrays.sort(arr); // Traverse the array for ( int i = 0 ; i < n; i++) { // If max_length is already // greater than or equal // than remaining length if (max_length >= n - i) break ; store.clear(); find_max_length(arr, i, 0 , k); } return max_length; } // Driver code public static void main(String[] args) { int []arr = { - 3 , 0 , 1 , 1 , 2 }; int n = arr.length; int k = 1 ; System.out.print(longestSubsequence(arr, n, k)); } } // This code is contributed by Princi Singh |
Python3
# Python3 Program to implement the # above approach # Initialise maximum possible # length of subsequence max_length = 0 # Store elements to compare # max_length with its size # and change the value of # max_length accordingly store = [] # Store the elements of the # longest subsequence ans = [] # Function to find the length # of longest subsequence def find_max_length(arr, index, sum , k): global max_length sum = sum + arr[index] store.append(arr[index]) if ( sum = = k): if (max_length < len (store)): # Update max_length max_length = len (store) # Store the subsequence # elements ans = store for i in range ( index + 1 , len (arr)): if ( sum + arr[i] < = k): # Recursively proceed # with obtained sum find_max_length(arr, i, sum , k) # popping elements # from back # of vector store store.pop() # if sum > 0 then we don't # required thatsubsequence # so return and continue # with earlier elements else : return return def longestSubsequence(arr, n, k): # Sort the given array arr.sort() # Traverse the array for i in range (n): # If max_length is already # greater than or equal # than remaining length if (max_length > = n - i): break store.clear() find_max_length(arr, i, 0 , k) return max_length # Driver code if __name__ = = "__main__" : arr = [ - 3 , 0 , 1 , 1 , 2 ] n = len (arr) k = 1 print (longestSubsequence(arr, n, k)) # This code is contributed by Chitranayal |
C#
// C# program to implement the // above approach using System; using System.Collections.Generic; class GFG{ // Initialise maximum possible // length of subsequence static int max_length = 0; // Store elements to compare // max_length with its size // and change the value of // max_length accordingly static List< int > store = new List< int >(); // Store the elements of the // longest subsequence static List< int > ans = new List< int >(); // Function to find the length // of longest subsequence static void find_max_length( int []arr, int index, int sum, int k) { sum = sum + arr[index]; store.Add(arr[index]); if (sum == k) { if (max_length < store.Count) { // Update max_length max_length = store.Count; // Store the subsequence // elements ans = store; } } for ( int i = index + 1; i < arr.Length; i++) { if (sum + arr[i] <= k) { // Recursively proceed // with obtained sum find_max_length(arr, i, sum, k); // popping elements // from back // of vector store store.RemoveAt(store.Count - 1); } // If sum > 0 then we don't // required thatsubsequence // so return and continue // with earlier elements else return ; } return ; } static int longestSubsequence( int []arr, int n, int k) { // Sort the given array Array.Sort(arr); // Traverse the array for ( int i = 0; i < n; i++) { // If max_length is already // greater than or equal // than remaining length if (max_length >= n - i) break ; store.Clear(); find_max_length(arr, i, 0, k); } return max_length; } // Driver code public static void Main(String[] args) { int []arr = { -3, 0, 1, 1, 2 }; int n = arr.Length; int k = 1; Console.Write(longestSubsequence(arr, n, k)); } } // This code is contributed by gauravrajput1 |
Javascript
<script> // Javascript Program to implement the // above approach // Initialise maximum possible // length of subsequence let max_length = 0; // Store elements to compare // max_length with its size // and change the value of // max_length accordingly let store = []; // Store the elements of the // longest subsequence let ans = []; // Function to find the length // of longest subsequence function find_max_length(arr,index,sum,k) { sum = sum + arr[index]; store.push(arr[index]); if (sum == k) { if (max_length < store.length) { // Update max_length max_length = store.length; // Store the subsequence // elements ans = store; } } for (let i = index + 1; i < arr.length; i++) { if (sum + arr[i] <= k) { // Recursively proceed // with obtained sum find_max_length(arr, i, sum, k); // popping elements // from back // of vector store store.pop(); } // if sum > 0 then we don't // required thatsubsequence // so return and continue // with earlier elements else return ; } return ; } function longestSubsequence(arr, n, k) { // Sort the given array arr.sort( function (a,b){ return a-b;}); // Traverse the array for (let i = 0; i < n; i++) { // If max_length is already // greater than or equal // than remaining length if (max_length >= n - i) break ; store=[]; find_max_length(arr, i, 0, k); } return max_length; } // Driver code let arr = [-3, 0, 1, 1, 2 ]; let n = arr.length; let k = 1; document.write(longestSubsequence(arr,n, k)); // This code is contributed by avanitrachhadiya2155 </script> |
5
Time Complexity: O(N3)
Auxiliary Space: O(N)
Dynamic Programming Approach: Refer to this article for a further optimized approach to solve the problem.
Ready to dive in? Explore our Free Demo Content and join our DSA course, trusted by over 100,000 neveropen!