Sunday, November 17, 2024
Google search engine
HomeData Modelling & AIMaximum path sum in the given arrays with at most K jumps

Maximum path sum in the given arrays with at most K jumps

Given three arrays A, B, and C each having N elements, the task is to find the maximum sum that can be obtained along any valid path with at most K jumps.
A path is valid if it follows the following properties:  

  1. It starts from the 0th index of an array.
  2. It ends at (N-1)th index of an array.
  3. For any element in the path at index i, the next element should be on the index i+1 of either current or adjacent array only.
  4. If the path involves selecting the next (i + 1)th element from the adjacent array, instead of the current one, then it is said to be 1 jump

Examples:  

Input: A[] = {4, 5, 1, 2, 10}, B[] = {9, 7, 3, 20, 16}, C[] = {6, 12, 13, 9, 8}, K = 2 
Output: 70 
Explanation: 
Starting from array B and selecting the elements as follows: 
Select B[0]: 9 => sum = 9 
Jump to C[1]: 12 => sum = 21 
Select C[2]: 13 => sum = 34 
Jump to B[3]: 20 => sum = 54 
Select B[4]: 16 => sum = 70 
Therefore maximum sum with at most 2 jumps = 70
Input: A[] = {10, 4, 1, 8}, B[] = {9, 0, 2, 5}, C[] = {6, 2, 7, 3}, K = 2 
Output: 24 
 

Intuitive Greedy Approach (Not Correct): One possible idea to solve the problem could be to pick the maximum element at the current index and move to the next index having maximum value either from the current array or the adjacent array if jumps are left.
For example:  

Given,
A[] = {4, 5, 1, 2, 10},
B[] = {9, 7, 3, 20, 16},
C[] = {6, 12, 13, 9, 8},
K = 2

Finding the solution using the Greedy approach:  

Current maximum: 9, K = 2, sum = 9
Next maximum: 12, K = 1, sum = 12
Next maximum: 13, K = 1, sum = 25
Next maximum: 20, K = 0, sum = 45
Adding rest of elements: 16, K = 0, sum = 61
Clearly, this is not the maximum sum.

Hence, this approach is incorrect.
Dynamic Programming Approach: The DP can be used in two steps – Recursion and Memoization.  

  • Recursion: The problem could be broken down using the following recursive relation: 
    • On Array A, index i with K jumps

pathSum(A, i, k) = A[i] + max(pathSum(A, i+1, k), pathSum(B, i+1, k-1));

  • Similarly, on Array B,

pathSum(B, i, k) = B[i] + max(pathSum(B, i+1, k), max(pathSum(A, i+1, k-1), pathSum(C, i+1, k-1));

  • Similarly, on Array C,

pathSum(C, i, k) = C[i] + max(pathSum(C, i+1, k), pathSum(B, i+1, k-1));

  • Therefore, the maximum sum can be found as:

maxSum = max(pathSum(A, i, k), max(pathSum(B, i, k), pathSum(C, i, k)));
 

  • Memoization: The complexity of the above recursion solution can be reduced with the help of memoization. 
    • Store the results after calculating in a 3-dimensional array (dp) of size [3][N][K].
    • The value of any element of dp array stores the maximum sum on ith index with x jumps left in an array

Below is the implementation of the approach:  

C++




// C++ program to maximum path sum in
// the given arrays with at most K jumps
 
#include <iostream>
using namespace std;
 
#define M 3
#define N 5
#define K 2
 
int dp[M][N][K];
 
void initializeDp()
{
    for (int i = 0; i < M; i++)
        for (int j = 0; j < N; j++)
            for (int k = 0; k < K; k++)
                dp[i][j][k] = -1;
}
 
// Function to calculate maximum path sum
int pathSum(int* a, int* b, int* c,
            int i, int n,
            int k, int on)
{
    // Base Case
    if (i == n)
        return 0;
 
    if (dp[on][i][k] != -1)
        return dp[on][i][k];
 
    int current, sum;
    switch (on) {
    case 0:
        current = a[i];
        break;
    case 1:
        current = b[i];
        break;
    case 2:
        current = c[i];
        break;
    }
 
    // No jumps available.
    // Hence pathSum can be
    // from current array only
    if (k == 0) {
        return dp[on][i][k]
               = current
                 + pathSum(a, b, c, i + 1,
                           n, k, on);
    }
 
    // Since jumps are available
    // pathSum can be from current
    // or adjacent array
    switch (on) {
    case 0:
        sum = current
              + max(pathSum(a, b, c, i + 1,
                            n, k - 1, 1),
                    pathSum(a, b, c, i + 1,
                            n, k, 0));
        break;
    case 1:
        sum = current
              + max(pathSum(a, b, c, i + 1,
                            n, k - 1, 0),
                    max(pathSum(a, b, c, i + 1,
                                n, k, 1),
                        pathSum(a, b, c, i + 1,
                                n, k - 1, 2)));
        break;
    case 2:
        sum = current
              + max(pathSum(a, b, c, i + 1,
                            n, k - 1, 1),
                    pathSum(a, b, c, i + 1,
                            n, k, 2));
        break;
    }
 
    return dp[on][i][k] = sum;
}
 
void findMaxSum(int* a, int* b,
                int* c, int n, int k)
{
    int sum = 0;
 
    // Creating the DP array for memoization
    initializeDp();
 
    // Find the pathSum using recursive approach
    for (int i = 0; i < 3; i++) {
 
        // Maximise the sum
        sum = max(sum,
                  pathSum(a, b, c, 0,
                          n, k, i));
    }
 
    cout << sum;
}
 
// Driver Code
int main()
{
    int n = 5, k = 1;
    int A[n] = { 4, 5, 1, 2, 10 };
    int B[n] = { 9, 7, 3, 20, 16 };
    int C[n] = { 6, 12, 13, 9, 8 };
 
    findMaxSum(A, B, C, n, k);
 
    return 0;
}


Java




// Java program to maximum path sum in
// the given arrays with at most K jumps
import java.util.*;
class GFG
{
    static int M = 3;
    static int N = 5;
    static int K = 2;
     
    static int dp[][][] = new int[M][N][K];
     
    static void initializeDp()
    {
        for (int i = 0; i < M; i++)
            for (int j = 0; j < N; j++)
                for (int k = 0; k < K; k++)
                    dp[i][j][k] = -1;
    }
     
    // Function to calculate maximum path sum
    static int pathSum(int a[], int b[], int c[],
                int i, int n,
                int k, int on)
    {
        // Base Case
        if (i == n)
            return 0;
     
        if (dp[on][i][k] != -1)
            return dp[on][i][k];
     
        int current = 0, sum = 0;
         
        switch (on) {
        case 0:
            current = a[i];
            break;
        case 1:
            current = b[i];
            break;
        case 2:
            current = c[i];
            break;
        }
     
        // No jumps available.
        // Hence pathSum can be
        // from current array only
        if (k == 0) {
            return dp[on][i][k]
                = current
                    + pathSum(a, b, c, i + 1,
                            n, k, on);
        }
     
        // Since jumps are available
        // pathSum can be from current
        // or adjacent array
        switch (on) {
        case 0:
            sum = current
                + Math.max(pathSum(a, b, c, i + 1,
                                n, k - 1, 1),
                        pathSum(a, b, c, i + 1,
                                n, k, 0));
            break;
        case 1:
            sum = current
                + Math.max(pathSum(a, b, c, i + 1,
                                n, k - 1, 0),
                        Math.max(pathSum(a, b, c, i + 1,
                                    n, k, 1),
                            pathSum(a, b, c, i + 1,
                                    n, k - 1, 2)));
            break;
        case 2:
            sum = current
                + Math.max(pathSum(a, b, c, i + 1,
                                n, k - 1, 1),
                        pathSum(a, b, c, i + 1,
                                n, k, 2));
            break;
        }
     
        return dp[on][i][k] = sum;
    }
     
    static void findMaxSum(int a[], int b[],
                    int c[], int n, int k)
    {
        int sum = 0;
     
        // Creating the DP array for memoization
        initializeDp();
     
        // Find the pathSum using recursive approach
        for (int i = 0; i < 3; i++) {
     
            // Maximise the sum
            sum = Math.max(sum,
                    pathSum(a, b, c, 0,
                            n, k, i));
        }
     
        System.out.print(sum);
    }
     
    // Driver Code
    public static void main(String []args)
    {
        int n = 5, k = 1;
        int A[] = { 4, 5, 1, 2, 10 };
        int B[] = { 9, 7, 3, 20, 16 };
        int C[] = { 6, 12, 13, 9, 8 };
     
        findMaxSum(A, B, C, n, k);
    }
}
 
// This code is contributed by chitranayal


Python




#Python3 program to maximum path sum in
#the given arrays with at most K jumps
M = 3
N = 5
K = 2
dp=[[[-1 for i in range(K)]
      for i in range(N)]
      for i in range(M)]
def initializeDp():
    for i in range(M):
        for j in range(N):
            for k in range(K):
                dp[i][j][k] = -1
 
#Function to calculate maximum path sum
def pathSum(a, b, c, i, n, k, on):
 
    #Base Case
    if (i == n):
        return 0
 
    if (dp[on][i][k] != -1):
        return dp[on][i][k]
    current, sum = 0, 0
    if on == 0:
        current = a[i]
        #break
    if on == 1:
        current = b[i]
        #break
    if on == 2:
        current = c[i]
        #break
 
    #No jumps available.
    #Hence pathSum can be
    #from current array only
    if (k == 0):
        dp[on][i][k] = current +
                       pathSum(a, b, c,
                               i + 1, n, k, on)
        return dp[on][i][k]
 
    #Since jumps are available
    #pathSum can be from current
    #or adjacent array
    if on == 0:
        sum = current + max(pathSum(a, b, c, i + 1,
                                    n, k - 1, 1),
                            pathSum(a, b, c,
                                    i + 1, n, k, 0))
         
    #break
    if on == 1:
        sum = current + max(pathSum(a, b, c, i + 1,
                                    n, k - 1, 0),
                        max(pathSum(a, b, c, i + 1,
                                    n, k, 1),
                            pathSum(a, b, c, i + 1,
                                    n, k - 1, 2)))
         
    #break
    if on == 2:
        sum = current + max(pathSum(a, b, c, i + 1,
                                    n, k - 1, 1),
                            pathSum(a, b, c, i + 1,
                                    n, k, 2))
         
    #break
    dp[on][i][k] = sum
 
    return sum
 
def findMaxSum(a, b, c, n, k):
    sum = 0
 
    #Creating the DP array for memoization
    initializeDp()
 
    #Find the pathSum using recursive approach
    for i in range(3):
 
        #Maximise the sum
        sum = max(sum, pathSum(a, b, c, 0, n, k, i))
 
    print(sum)
 
#Driver Code
if __name__ == '__main__':
    n = 5
    k = 1
    A = [4, 5, 1, 2, 10]
    B = [9, 7, 3, 20, 16]
    C = [6, 12, 13, 9, 8]
    findMaxSum(A, B, C, n, k)
 
#This code is contributed by Mohit Kumar 29


C#




// C# program to maximum path sum in
// the given arrays with at most K jumps
using System;
 
class GFG{
     
static int M = 3;
static int N = 5;
static int K = 2;
     
static int [,,]dp = new int[M, N, K];
     
static void initializeDp()
{
    for(int i = 0; i < M; i++)
       for(int j = 0; j < N; j++)
          for(int k = 0; k < K; k++)
             dp[i, j, k] = -1;
}
     
// Function to calculate maximum path sum
static int pathSum(int []a, int []b, int []c,
                   int i, int n,
                   int k, int on)
{
     
    // Base Case
    if (i == n)
        return 0;
     
    if (dp[on, i, k] != -1)
        return dp[on, i, k];
     
    int current = 0, sum = 0;
         
    switch (on)
    {
    case 0:
        current = a[i];
        break;
    case 1:
        current = b[i];
        break;
    case 2:
        current = c[i];
        break;
    }
     
    // No jumps available.
    // Hence pathSum can be
    // from current array only
    if (k == 0)
    {
        return dp[on, i, k] = current +
                              pathSum(a, b, c, i + 1,
                                      n, k, on);
    }
     
    // Since jumps are available
    // pathSum can be from current
    // or adjacent array
    switch (on)
    {
    case 0:
        sum = current + Math.Max(pathSum(a, b, c, i + 1,
                                         n, k - 1, 1),
                                 pathSum(a, b, c, i + 1,
                                         n, k, 0));
        break;
    case 1:
        sum = current + Math.Max(pathSum(a, b, c, i + 1,
                                         n, k - 1, 0),
                        Math.Max(pathSum(a, b, c, i + 1,
                                          n, k, 1),
                                 pathSum(a, b, c, i + 1,
                                         n, k - 1, 2)));
        break;
    case 2:
        sum = current + Math.Max(pathSum(a, b, c, i + 1,
                                         n, k - 1, 1),
                                 pathSum(a, b, c, i + 1,
                                         n, k, 2));
        break;
    }
     
    return dp[on, i, k] = sum;
}
     
static void findMaxSum(int []a, int []b,
                       int []c, int n, int k)
{
    int sum = 0;
     
    // Creating the DP array for memoization
    initializeDp();
     
    // Find the pathSum using recursive approach
    for(int i = 0; i < 3; i++)
    {
        
       // Maximise the sum
       sum = Math.Max(sum, pathSum(a, b, c, 0,
                                   n, k, i));
    }
    Console.Write(sum);
}
     
// Driver Code
public static void Main(String []args)
{
    int n = 5, k = 1;
    int []A = { 4, 5, 1, 2, 10 };
    int []B = { 9, 7, 3, 20, 16 };
    int []C = { 6, 12, 13, 9, 8 };
     
    findMaxSum(A, B, C, n, k);
}
}
 
// This code is contributed by gauravrajput1


Javascript




<script>
// Javascript program to maximum path sum in
// the given arrays with at most K jumps
 
    let  M = 3;
    let N = 5;
    let K = 2;
     
    let dp=new Array(M);
     
    function initializeDp()
    {
        for (let i = 0; i < M; i++)
        {   
            dp[i]=new Array(N);
            for (let j = 0; j < N; j++)
            {
                dp[i][j]=new Array(K);
                for (let k = 0; k < K; k++)
                    dp[i][j][k] = -1;
            }
         }
     }
      
     // Function to calculate maximum path sum
     function pathSum(a,b,c,i,n,k,on)
     {
         // Base Case
        if (i == n)
            return 0;
      
        if (dp[on][i][k] != -1)
            return dp[on][i][k];
      
        let current = 0, sum = 0;
          
        switch (on) {
        case 0:
            current = a[i];
            break;
        case 1:
            current = b[i];
            break;
        case 2:
            current = c[i];
            break;
         
        }
      
        // No jumps available.
        // Hence pathSum can be
        // from current array only
        if (k == 0) {
            return dp[on][i][k]
                = current
                    + pathSum(a, b, c, i + 1,
                            n, k, on);
        }
      
        // Since jumps are available
        // pathSum can be from current
        // or adjacent array
        switch (on) {
        case 0:
            sum = current
                + Math.max(pathSum(a, b, c, i + 1,
                                n, k - 1, 1),
                        pathSum(a, b, c, i + 1,
                                n, k, 0));
            break;
        case 1:
            sum = current
                + Math.max(pathSum(a, b, c, i + 1,
                                n, k - 1, 0),
                        Math.max(pathSum(a, b, c, i + 1,
                                    n, k, 1),
                            pathSum(a, b, c, i + 1,
                                    n, k - 1, 2)));
            break;
        case 2:
            sum = current
                + Math.max(pathSum(a, b, c, i + 1,
                                n, k - 1, 1),
                        pathSum(a, b, c, i + 1,
                                n, k, 2));
            break;
         
      
        }
      
        return dp[on][i][k] = sum;
     }
      
     function findMaxSum(a,b,c,n,k)
     {
         let sum = 0;
      
        // Creating the DP array for memoization
        initializeDp();
      
        // Find the pathSum using recursive approach
        for (let i = 0; i < 3; i++) {
      
            // Maximise the sum
            sum = Math.max(sum,
                    pathSum(a, b, c, 0,
                            n, k, i));
        }
      
        document.write(sum);
     }
      
     // Driver Code
     let n = 5, k = 1;
     let A=[4, 5, 1, 2, 10];
     let B=[9, 7, 3, 20, 16];
     let C=[6, 12, 13, 9, 8 ];
     
    findMaxSum(A, B, C, n, k);
     
    // This code is contributed by avanitrachhadiya2155
</script>


Output

67


Time Complexity: O(N * K) 
Auxiliary Space: O(N * K)

Another approach : Dp tabulation (iterative)

In previous approach we solve the problem using recursion + memoization and use where we use DP to store the computation and also check whether we compute the particular problem previously or not but in this approach we solve the problem iteratively by using only DP and no recursion.

Implementation Steps:

  • Create a 3d Dp to store computation previous of previous subproblems.
  • Initialize DP with base cases.
  • Here dp[i][j][x] stores the maximum sum using at most x jumps till index j of the i-th array.
  • Initialize 3 nested loops to compute every subpreoblems.
  • Noe initialize a variable nextMax with 0  and Calculate maximum sum possible after making a jump from the current array.
  • At last initialize the variable maxSum the contains maximum sum is the maximum value in the dp table.
  • Finally print maxSum.

Implementation:

C++




#include <iostream>
#include <algorithm>
using namespace std;
 
#define M 3
#define N 5
#define K 2
 
// Dp to store computation of previous subproblems
int dp[M][N][K];
 
// Function to calculate maximum path sum
void findMaxSum(int* a, int* b,
                int* c, int n, int k)
{
    // Initializing dp table with base case values
    for (int i = 0; i < M; i++)
        for (int j = 0; j < N; j++)
            for (int x = 0; x <= k; x++)
                dp[i][j][x] = 0;
 
    // dp[i][j][x] stores the maximum sum
    // using at most x jumps till index j
    // of the i-th array
    for (int x = 0; x <= k; x++) {
        for (int j = n - 1; j >= 0; j--) {
            for (int i = 0; i < M; i++) {
                int current;
                switch (i) {
                case 0:
                    current = a[j];
                    break;
                case 1:
                    current = b[j];
                    break;
                case 2:
                    current = c[j];
                    break;
                }
 
                if (j == n - 1) {
                    // Base case when at the last index
                    dp[i][j][x] = current;
                }
                else if (x == 0) {
                    // If no jumps available, path can only
                    // continue from current array
                    dp[i][j][x] = current + dp[i][j + 1][x];
                }
                else {
                    int nextMax = 0;
                    // Calculating maximum sum possible after
                    // making a jump from the current array
                    for (int next = 0; next < M; next++) {
                        if (next != i) {
                            nextMax = max(nextMax, dp[next][j + 1][x - 1]);
                        }
                        else {
                            nextMax = max(nextMax, dp[next][j + 1][x]);
                        }
                    }
                    dp[i][j][x] = current + nextMax;
                }
            }
        }
    }
 
    // Maximum sum is the maximum value in the dp table
    int maxSum = 0;
    for (int i = 0; i < M; i++) {
        maxSum = max(maxSum, dp[i][0][k]);
    }
 
    cout << maxSum << endl;
}
 
 
// Driver Code
int main()
{
    int n = 5, k = 1;
    int A[n] = { 4, 5, 1, 2, 10 };
    int B[n] = { 9, 7, 3, 20, 16 };
    int C[n] = { 6, 12, 13, 9, 8 };
     
      // function call
    findMaxSum(A, B, C, n, k);
 
    return 0;
}


Java




import java.util.*;
 
public class Main {
  static final int M = 3;
  static final int N = 5;
  static final int K = 2;
 
  // Dp to store computation of previous subproblems
  static int[][][] dp = new int[M][N][K + 1];
 
  // Function to calculate maximum path sum
  static void findMaxSum(int[] a, int[] b, int[] c, int n, int k)
  {
 
    // Initializing dp table with base case values
    for (int i = 0; i < M; i++) {
      for (int j = 0; j < N; j++) {
        for (int x = 0; x <= k; x++) {
          dp[i][j][x] = 0;
        }
      }
    }
 
    // dp[i][j][x] stores the maximum sum
    // using at most x jumps till index j
    // of the i-th array
    for (int x = 0; x <= k; x++) {
      for (int j = n - 1; j >= 0; j--) {
        for (int i = 0; i < M; i++) {
          int current;
          switch (i) {
            case 0:
              current = a[j];
              break;
            case 1:
              current = b[j];
              break;
            case 2:
              current = c[j];
              break;
            default:
              current = 0;
              break;
          }
 
          if (j == n - 1) {
            // Base case when at the last index
            dp[i][j][x] = current;
          } else if (x == 0) {
            // If no jumps available, path can only
            // continue from current array
            dp[i][j][x] = current + dp[i][j + 1][x];
          } else {
            int nextMax = 0;
            // Calculating maximum sum possible after
            // making a jump from the current array
            for (int next = 0; next < M; next++) {
              if (next != i) {
                nextMax = Math.max(nextMax, dp[next][j + 1][x - 1]);
              } else {
                nextMax = Math.max(nextMax, dp[next][j + 1][x]);
              }
            }
            dp[i][j][x] = current + nextMax;
          }
        }
      }
    }
 
    // Maximum sum is the maximum value in the dp table
    int maxSum = 0;
    for (int i = 0; i < M; i++) {
      maxSum = Math.max(maxSum, dp[i][0][k]);
    }
 
    System.out.println(maxSum);
  }
 
  // Driver Code
  public static void main(String[] args) {
    int n = 5, k = 1;
    int[] A = { 4, 5, 1, 2, 10 };
    int[] B = { 9, 7, 3, 20, 16 };
    int[] C = { 6, 12, 13, 9, 8 };
 
    // function call
    findMaxSum(A, B, C, n, k);
  }
}


Python3




# Function to calculate maximum path sum
def findMaxSum(a, b, c, n, k):
    # Initialize a 3D DP table with zeros
    dp = [[[0 for _ in range(k + 1)] for _ in range(n)] for _ in range(3)]
 
    # dp[i][j][x] stores the maximum sum using at most x jumps till index j of the i-th array
    for x in range(k + 1):
        for j in range(n - 1, -1, -1):
            for i in range(3):
                current = 0
                if i == 0:
                    current = a[j]
                elif i == 1:
                    current = b[j]
                elif i == 2:
                    current = c[j]
 
                if j == n - 1:
                    # Base case when at the last index
                    dp[i][j][x] = current
                elif x == 0:
                    # If no jumps available, path can only continue from the current array
                    dp[i][j][x] = current + dp[i][j + 1][x]
                else:
                    nextMax = 0
                    # Calculating maximum sum possible after making a jump from the current array
                    for nextArr in range(3):
                        if nextArr != i:
                            nextMax = max(nextMax, dp[nextArr][j + 1][x - 1])
                        else:
                            nextMax = max(nextMax, dp[nextArr][j + 1][x])
                    dp[i][j][x] = current + nextMax
 
    # Maximum sum is the maximum value in the dp table
    maxSum = 0
    for i in range(3):
        maxSum = max(maxSum, dp[i][0][k])
 
    print(maxSum)
 
# Driver Code
if __name__ == "__main__":
    n = 5
    k = 1
    A = [4, 5, 1, 2, 10]
    B = [9, 7, 3, 20, 16]
    C = [6, 12, 13, 9, 8]
     
    # Function call
    findMaxSum(A, B, C, n, k)
     
# This code is contributed by Dwaipayan Bandyopadhyay


C#




using System;
 
class Program
{
    const int M = 3;
    const int N = 5;
    const int K = 2;
 
    // Dp to store computation of previous subproblems
    static int[,,] dp = new int[M, N, K + 1];
 
    // Function to calculate maximum path sum
    static void FindMaxSum(int[] a, int[] b, int[] c, int n, int k)
    {
        // Initializing dp table with base case values
        for (int i = 0; i < M; i++)
        {
            for (int j = 0; j < N; j++)
            {
                for (int x = 0; x <= k; x++)
                {
                    dp[i, j, x] = 0;
                }
            }
        }
 
        // dp[i, j, x] stores the maximum sum
        // using at most x jumps till index j
        // of the i-th array
        for (int x = 0; x <= k; x++)
        {
            for (int j = n - 1; j >= 0; j--)
            {
                for (int i = 0; i < M; i++)
                {
                    int current = 0; // Initialize current here
 
                    switch (i)
                    {
                        case 0:
                            current = a[j];
                            break;
                        case 1:
                            current = b[j];
                            break;
                        case 2:
                            current = c[j];
                            break;
                    }
 
                    if (j == n - 1)
                    {
                        // Base case when at the last index
                        dp[i, j, x] = current;
                    }
                    else if (x == 0)
                    {
                        // If no jumps available, path can only
                        // continue from the current array
                        dp[i, j, x] = current + dp[i, j + 1, x];
                    }
                    else
                    {
                        int nextMax = 0;
                        // Calculating maximum sum possible after
                        // making a jump from the current array
                        for (int next = 0; next < M; next++)
                        {
                            if (next != i)
                            {
                                nextMax = Math.Max(nextMax, dp[next, j + 1, x - 1]);
                            }
                            else
                            {
                                nextMax = Math.Max(nextMax, dp[next, j + 1, x]);
                            }
                        }
                        dp[i, j, x] = current + nextMax;
                    }
                }
            }
        }
 
        // Maximum sum is the maximum value in the dp table
        int maxSum = 0;
        for (int i = 0; i < M; i++)
        {
            maxSum = Math.Max(maxSum, dp[i, 0, k]);
        }
 
        Console.WriteLine(maxSum);
    }
 
    // Driver Code
    static void Main()
    {
        int n = 5, k = 1;
        int[] A = { 4, 5, 1, 2, 10 };
        int[] B = { 9, 7, 3, 20, 16 };
        int[] C = { 6, 12, 13, 9, 8 };
 
        // Function call
        FindMaxSum(A, B, C, n, k);
    }
}
 
 
// This code is contributed by rambabuguphka


Javascript




const M = 3;
const N = 5;
const K = 2;
 
// Dp to store computation of previous subproblems
const dp = new Array(M).fill(0).map(() => new Array(N).fill(0).map(() => new Array(K + 1).fill(0)));
 
// Function to calculate maximum path sum
function findMaxSum(a, b, c, n, k) {
  // Initializing dp table with base case values
  for (let i = 0; i < M; i++) {
    for (let j = 0; j < N; j++) {
      for (let x = 0; x <= k; x++) {
        dp[i][j][x] = 0;
      }
    }
  }
 
  // dp[i][j][x] stores the maximum sum
  // using at most x jumps till index j
  // of the i-th array
  for (let x = 0; x <= k; x++) {
    for (let j = n - 1; j >= 0; j--) {
      for (let i = 0; i < M; i++) {
        let current;
        switch (i) {
          case 0:
            current = a[j];
            break;
          case 1:
            current = b[j];
            break;
          case 2:
            current = c[j];
            break;
        }
 
        if (j == n - 1) {
          // Base case when at the last index
          dp[i][j][x] = current;
        } else if (x == 0) {
          // If no jumps available, path can only
          // continue from current array
          dp[i][j][x] = current + dp[i][j + 1][x];
        } else {
          let nextMax = 0;
          // Calculating maximum sum possible after
          // making a jump from the current array
          for (let next = 0; next < M; next++) {
            if (next != i) {
              nextMax = Math.max(nextMax, dp[next][j + 1][x - 1]);
            } else {
              nextMax = Math.max(nextMax, dp[next][j + 1][x]);
            }
          }
          dp[i][j][x] = current + nextMax;
        }
      }
    }
  }
 
  // Maximum sum is the maximum value in the dp table
  let maxSum = 0;
  for (let i = 0; i < M; i++) {
    maxSum = Math.max(maxSum, dp[i][0][k]);
  }
 
  console.log(maxSum);
}
 
// Driver Code
const n = 5;
const k = 1;
const A = [4, 5, 1, 2, 10];
const B = [9, 7, 3, 20, 16];
const C = [6, 12, 13, 9, 8];
 
// function call
findMaxSum(A, B, C, n, k);


Output:

67

Time Complexity: O(M * N * K) 
Auxiliary Space: O(M * N * K)

Feeling lost in the world of random DSA topics, wasting time without progress? It’s time for a change! Join our DSA course, where we’ll guide you on an exciting journey to master DSA efficiently and on schedule.
Ready to dive in? Explore our Free Demo Content and join our DSA course, trusted by over 100,000 neveropen!

RELATED ARTICLES

Most Popular

Recent Comments