Sunday, November 17, 2024
Google search engine
HomeData Modelling & AIMaximum number of times a given string needs to be concatenated to...

Maximum number of times a given string needs to be concatenated to form a substring of another string

Given two strings S1 and S2 of length N and M respectively, the task is to find the maximum value of times the string S2 needs to be concatenated, such that it is a substring of the string S1.

Examples:

Input: S1 = “ababc”, S2 = “ab”
Output: 2
Explanation: After concatenating S2 exactly twice, the string modifies to “abab”. Therefore, string “abab” is a substring of “ababc”. Therefore, the result is 2.

Input: S1 = “ababc”, S2 = “ba”
Output: 1
Explanation: String “ba” is already a substring of “ababc”. Therefore, the result is 1.

Approach: To solve the given problem, the idea to use the KMP algorithm. Follow the steps below to solve the problem:

  • Initialize a variable, say ans, to store the maximum value K such that concatenating S2 K times form a substring of the string S1.
  • Initialize a string curWord and copy the contents of S2 in curWord.
  • Store the maximum number of times a string can occur as numWords = N / M.
  • Traverse the string over the indices [0, numWords – 1] and perform the following steps:
    • If the value of curWord is found in string S1, then increment ans by 1 and concatenate curWord with the word.
    • Otherwise, break out of the loop.
  • After the above steps, print the value of ans as the result.

Below is the implementation of the above approach:

C++




// C++ program for the above approach
#include <bits/stdc++.h>
using namespace std;
 
// Function to find lps[] for given
// pattern pat[0..M-1]
void computeLPSArray(string pat, int M,
                     int* lps)
{
    // Length of the previous
    // longest prefix suffix
    int len = 0;
 
    // lps[0] is always 0
    lps[0] = 0;
 
    // Iterate string to calculate lps[i]
    int i = 1;
    while (i < M) {
 
        // If the current character
        // of the pattern matches
        if (pat[i] == pat[len]) {
            len++;
            lps[i] = len;
            i++;
        }
 
        // Otherwise
        else {
 
            if (len != 0) {
 
                len = lps[len - 1];
            }
 
            // Otherwise
            else {
                lps[i] = 0;
                i++;
            }
        }
    }
}
 
// Function to implement KMP algorithm
int KMPSearch(string pat, string txt)
{
    int M = pat.size();
    int N = txt.size();
 
    // Stores the longest prefix and
    // suffix values for pattern
    int lps[M];
 
    // Preprocess the pattern and
    // find the lps[] array
    computeLPSArray(pat, M, lps);
 
    // Index for txt[]
    int i = 0;
 
    // Index for pat[]
    int j = 0;
    while (i < N) {
 
        if (pat[j] == txt[i]) {
            j++;
            i++;
        }
 
        // If pattern is found return 1
        if (j == M) {
            return 1;
            j = lps[j - 1];
        }
 
        // Mismatch after j matches
        else if (i < N
                 && pat[j] != txt[i]) {
 
            // Don't match lps[0, lps[j - 1]]
            // characters they will
            // match anyway
            if (j != 0)
                j = lps[j - 1];
            else
                i = i + 1;
        }
    }
 
    // Return 0 if the pattern is not found
    return 0;
}
 
// Function to find the maximum value
// K for which string S2 concatenated
// K times is a substring of string S1
void maxRepeating(string seq, string word)
{
    // Store the required maximum number
    int resCount = 0;
 
    // Create a temporary string to store
    // string word
    string curWord = word;
 
    // Store the maximum number of times
    // string S2 can occur in string S1
    int numWords = seq.length() / word.length();
 
    // Traverse in range[0, numWords-1]
    for (int i = 0; i < numWords; i++) {
 
        // If curWord is found in sequence
        if (KMPSearch(curWord, seq)) {
 
            // Concatenate word to curWord
            curWord += word;
 
            // Increment resCount by 1
            resCount++;
        }
 
        // Otherwise break the loop
        else
            break;
    }
 
    // Print the answer
    cout << resCount;
}
 
// Driver Code
int main()
{
    string S1 = "ababc", S2 = "ab";
 
    // Function Call
    maxRepeating(S1, S2);
 
    return 0;
}


Java




// Java program for the above approach
class GFG
{
     
    // Function to find lps[] for given
    // pattern pat[0..M-1]
    static void computeLPSArray(String pat, int M,
                         int []lps)
    {
        // Length of the previous
        // longest prefix suffix
        int len = 0;
     
        // lps[0] is always 0
        lps[0] = 0;
     
        // Iterate string to calculate lps[i]
        int i = 1;
        while (i < M)
        {
     
            // If the current character
            // of the pattern matches
            if (pat.charAt(i) == pat.charAt(len))
            {
                len++;
                lps[i] = len;
                i++;
            }
     
            // Otherwise
            else
            {
                if (len != 0)
                {   
                    len = lps[len - 1];
                }
     
                // Otherwise
                else
                {
                    lps[i] = 0;
                    i++;
                }
            }
        }
    }
     
    // Function to implement KMP algorithm
    static int KMPSearch(String pat, String txt)
    {
        int M = pat.length();
        int N = txt.length();
     
        // Stores the longest prefix and
        // suffix values for pattern
        int lps[] = new int[M];
     
        // Preprocess the pattern and
        // find the lps[] array
        computeLPSArray(pat, M, lps);
     
        // Index for txt[]
        int i = 0;
     
        // Index for pat[]
        int j = 0;
        while (i < N)
        {   
            if (pat.charAt(j) == txt.charAt(i))
            {
                j++;
                i++;
            }
     
            // If pattern is found return 1
            if (j == M)
            {
                return 1;
                //j = lps[j - 1];
            }
     
            // Mismatch after j matches
            else if (i < N
                     && pat.charAt(j) != txt.charAt(i))
            {
     
                // Don't match lps[0, lps[j - 1]]
                // characters they will
                // match anyway
                if (j != 0)
                    j = lps[j - 1];
                else
                    i = i + 1;
            }
        }
     
        // Return 0 if the pattern is not found
        return 0;
    }
     
    // Function to find the maximum value
    // K for which string S2 concatenated
    // K times is a substring of string S1
    static void maxRepeating(String seq, String word)
    {
       
        // Store the required maximum number
        int resCount = 0;
     
        // Create a temporary string to store
        // string word
        String curWord = word;
     
        // Store the maximum number of times
        // string S2 can occur in string S1
        int numWords = seq.length() / word.length();
     
        // Traverse in range[0, numWords-1]
        for (int i = 0; i < numWords; i++)
        {
     
            // If curWord is found in sequence
            if (KMPSearch(curWord, seq) == 1)
            {
     
                // Concatenate word to curWord
                curWord += word;
     
                // Increment resCount by 1
                resCount++;
            }
     
            // Otherwise break the loop
            else
                break;
        }
     
        // Print the answer
        System.out.print(resCount);
    }
     
    // Driver Code
    public static void main (String[] args)
    {       
        String S1 = "ababc", S2 = "ab";
     
        // Function Call
        maxRepeating(S1, S2);
    }
}
 
// This code is contributed by AnkThon


Python3




# Python3 program for the above approach
 
# Function to find lps[] for given
# pattern pat[0..M-1]
def computeLPSArray(pat, M, lps):
     
    # Length of the previous
    # longest prefix suffix
    lenn = 0
 
    # lps[0] is always 0
    lps[0] = 0
 
    # Iterate string to calculate lps[i]
    i = 1
    while (i < M):
 
        # If the current character
        # of the pattern matches
        if (pat[i] == pat[lenn]):
            lenn += 1
            lps[i] = lenn
            i += 1
             
        # Otherwise
        else:
            if (lenn != 0):
                lenn = lps[lenn - 1]
             
            # Otherwise
            else:
                lps[i] = 0
                i += 1
 
# Function to implement KMP algorithm
def KMPSearch(pat, txt):
    M = len(pat)
    N = len(txt)
 
    # Stores the longest prefix and
    # suffix values for pattern
    lps = [0 for i in range(M)]
 
    # Preprocess the pattern and
    # find the lps[] array
    computeLPSArray(pat, M, lps)
 
    # Index for txt[]
    i = 0
 
    # Index for pat[]
    j = 0
    while (i < N):
 
        if (pat[j] == txt[i]):
            j += 1
            i += 1
 
        # If pattern is found return 1
        if (j == M):
            return 1
            j = lps[j - 1]
 
        # Mismatch after j matches
        elif (i < N and pat[j] != txt[i]):
 
            # Don't match lps[0, lps[j - 1]]
            # characters they will
            # match anyway
            if (j != 0):
                j = lps[j - 1]
            else:
                i = i + 1
 
    # Return 0 if the pattern is not found
    return 0
 
# Function to find the maximum value
# K for which S2 concatenated
# K times is a subof S1
def maxRepeating(seq, word):
     
    # Store the required maximum number
    resCount = 0
 
    # Create a temporary to store
    # word
    curWord = word
 
    # Store the maximum number of times
    # S2 can occur in S1
    numWords = len(seq) // len(word)
 
    # Traverse in range[0, numWords-1]
    for i in range(numWords):
 
        # If curWord is found in sequence
        if (KMPSearch(curWord, seq)):
 
            # Concatenate word to curWord
            curWord += word
 
            # Increment resCount by 1
            resCount += 1
 
        # Otherwise break the loop
        else:
            break
 
    # Print the answer
    print(resCount)
 
# Driver Code
if __name__ == '__main__':
    S1,S2 = "ababc","ab"
 
    # Function Call
    maxRepeating(S1, S2)
 
# This code is contributed by mohit kumar 29


C#




// C# program for the above approach
using System;
class GFG
{
     
    // Function to find lps[] for given
    // pattern pat[0..M-1]
    static void computeLPSArray(String pat, int M,
                         int []lps)
    {
        // Length of the previous
        // longest prefix suffix
        int len = 0;
     
        // lps[0] is always 0
        lps[0] = 0;
     
        // Iterate string to calculate lps[i]
        int i = 1;
        while (i < M)
        {
     
            // If the current character
            // of the pattern matches
            if (pat[i] == pat[len])
            {
                len++;
                lps[i] = len;
                i++;
            }
     
            // Otherwise
            else
            {
                if (len != 0)
                {   
                    len = lps[len - 1];
                }
     
                // Otherwise
                else
                {
                    lps[i] = 0;
                    i++;
                }
            }
        }
    }
     
    // Function to implement KMP algorithm
    static int KMPSearch(String pat, String txt)
    {
        int M = pat.Length;
        int N = txt.Length;
     
        // Stores the longest prefix and
        // suffix values for pattern
        int []lps = new int[M];
     
        // Preprocess the pattern and
        // find the lps[] array
        computeLPSArray(pat, M, lps);
     
        // Index for txt[]
        int i = 0;
     
        // Index for pat[]
        int j = 0;
        while (i < N)
        {   
            if (pat[j] == txt[i])
            {
                j++;
                i++;
            }
     
            // If pattern is found return 1
            if (j == M)
            {
                return 1;
                //j = lps[j - 1];
            }
     
            // Mismatch after j matches
            else if (i < N
                     && pat[j] != txt[i])
            {
     
                // Don't match lps[0, lps[j - 1]]
                // characters they will
                // match anyway
                if (j != 0)
                    j = lps[j - 1];
                else
                    i = i + 1;
            }
        }
     
        // Return 0 if the pattern is not found
        return 0;
    }
     
    // Function to find the maximum value
    // K for which string S2 concatenated
    // K times is a substring of string S1
    static void maxRepeating(String seq, String word)
    {
       
        // Store the required maximum number
        int resCount = 0;
     
        // Create a temporary string to store
        // string word
        String curWord = word;
     
        // Store the maximum number of times
        // string S2 can occur in string S1
        int numWords = seq.Length / word.Length;
     
        // Traverse in range[0, numWords-1]
        for (int i = 0; i < numWords; i++)
        {
     
            // If curWord is found in sequence
            if (KMPSearch(curWord, seq) == 1)
            {
     
                // Concatenate word to curWord
                curWord += word;
     
                // Increment resCount by 1
                resCount++;
            }
     
            // Otherwise break the loop
            else
                break;
        }
     
        // Print the answer
        Console.Write(resCount);
    }
     
    // Driver Code
    public static void Main(String[] args)
    {       
        String S1 = "ababc", S2 = "ab";
     
        // Function Call
        maxRepeating(S1, S2);
    }
}
 
// This code is contributed by 29AjayKumar


Javascript




<script>
 
// JavaScript program for the above approach
 
// Function to find lps[] for given
// pattern pat[0..M-1]
function computeLPSArray(pat, M, lps)
{
    // Length of the previous
    // longest prefix suffix
    var len = 0;
 
    // lps[0] is always 0
    lps[0] = 0;
 
    // Iterate string to calculate lps[i]
    var i = 1;
    while (i < M) {
 
        // If the current character
        // of the pattern matches
        if (pat[i] == pat[len]) {
            len++;
            lps[i] = len;
            i++;
        }
 
        // Otherwise
        else {
 
            if (len != 0) {
 
                len = lps[len - 1];
            }
 
            // Otherwise
            else {
                lps[i] = 0;
                i++;
            }
        }
    }
}
 
// Function to implement KMP algorithm
function KMPSearch(pat, txt)
{
    var M = pat.length;
    var N = txt.length;
 
    // Stores the longest prefix and
    // suffix values for pattern
    var lps = Array(M);
 
    // Preprocess the pattern and
    // find the lps[] array
    computeLPSArray(pat, M, lps);
 
    // Index for txt[]
    var i = 0;
 
    // Index for pat[]
    var j = 0;
    while (i < N) {
 
        if (pat[j] == txt[i]) {
            j++;
            i++;
        }
 
        // If pattern is found return 1
        if (j == M) {
            return 1;
            j = lps[j - 1];
        }
 
        // Mismatch after j matches
        else if (i < N
                 && pat[j] != txt[i]) {
 
            // Don't match lps[0, lps[j - 1]]
            // characters they will
            // match anyway
            if (j != 0)
                j = lps[j - 1];
            else
                i = i + 1;
        }
    }
 
    // Return 0 if the pattern is not found
    return 0;
}
 
// Function to find the maximum value
// K for which string S2 concatenated
// K times is a substring of string S1
function maxRepeating(seq, word)
{
    // Store the required maximum number
    var resCount = 0;
 
    // Create a temporary string to store
    // string word
    var curWord = word;
 
    // Store the maximum number of times
    // string S2 can occur in string S1
    var numWords = seq.length / word.length;
 
    // Traverse in range[0, numWords-1]
    for (var i = 0; i < numWords; i++) {
 
        // If curWord is found in sequence
        if (KMPSearch(curWord, seq)) {
 
            // Concatenate word to curWord
            curWord += word;
 
            // Increment resCount by 1
            resCount++;
        }
 
        // Otherwise break the loop
        else
            break;
    }
 
    // Print the answer
    document.write( resCount);
}
 
// Driver Code
var S1 = "ababc", S2 = "ab";
 
// Function Call
maxRepeating(S1, S2);
 
 
</script>


 
 

Output: 

2

 

 

Time Complexity: O(N2)
Auxiliary Space: O(M)

 

Feeling lost in the world of random DSA topics, wasting time without progress? It’s time for a change! Join our DSA course, where we’ll guide you on an exciting journey to master DSA efficiently and on schedule.
Ready to dive in? Explore our Free Demo Content and join our DSA course, trusted by over 100,000 neveropen!

RELATED ARTICLES

Most Popular

Recent Comments