Given a string str and an integer k. The task is to count the occurrences of sub-strings of length k that consist of the same characters. There can be multiple such sub-strings possible of length k, choose the count of the one which appears the maximum number of times as the sub-string (non-overlapping) of str.
Examples:
Input: str = “aaacaabbaa”, k = 2
Output: 3
“aa” and “bb” are the only sub-strings of length 2 that consist of the same characters.
“bb” appears only once as a sub-string of str whereas “aa” appears thrice (which is the answer)Input: str = “abab”, k = 2
Output: 0
Approach: Iterate over all the characters from ‘a’ to ‘z’ and count the number of times a string of length k consisting only of the current character appears as a sub-string of str. Print the maximum of these counts in the end.
Steps to solve the problem:
- Initialize maxSubStr to 0 and n to the size of the string s.
- Iterate over all characters of the English alphabet using a loop from 0 to 25.
- For each character, store it in a variable ch.
- Initialize a variable curr to 0.
- Use another loop to iterate over all possible substrings of length k in the string s.
- If the current character of the string s is not the same as the character ch, continue with the next iteration of the loop.
- If the current character is the same as ch, count the number of consecutive characters in the substring that are the same as ch, using a variable cnt.
- If cnt is not equal to k, continue with the next iteration of the loop.
- If cnt is equal to k, increment the variable curr.
- After the inner loop, update maxSubStr to the maximum of its current value and curr.
- After the outer loop, return maxSubStr as the result.
Below is the implementation of the above approach:
C++
// C++ implementation of the approach #include <bits/stdc++.h> using namespace std; // Function to return the count // of the required sub-strings int maxSubStrings(string s, int k) { int maxSubStr = 0, n = s.size(); // Iterate over all characters for ( int c = 0; c < 26; c++) { char ch = 'a' + c; // Count with current character int curr = 0; for ( int i = 0; i <= n - k; i++) { if (s[i] != ch) continue ; int cnt = 0; while (i < n && s[i] == ch && cnt != k) { i++; cnt++; } i--; // If the substring has a length k // then increment count with current character if (cnt == k) curr++; } // Update max count maxSubStr = max(maxSubStr, curr); } return maxSubStr; } // Driver Code int main() { string s = "aaacaabbaa" ; int k = 2; cout << maxSubStrings(s, k); return 0; } |
Java
// Java implementation of the approach import java.util.*; import java.lang.*; import java.io.*; class GFG { // Function to return the count // of the required sub-strings static int maxSubStrings(String s, int k) { int maxSubStr = 0 , n = s.length(); // Iterate over all characters for ( int c = 0 ; c < 26 ; c++) { char ch = ( char )(( int ) 'a' + c); // Count with current character int curr = 0 ; for ( int i = 0 ; i <= n - k; i++) { if (s.charAt(i) != ch) continue ; int cnt = 0 ; while (i < n && s.charAt(i) == ch && cnt != k) { i++; cnt++; } i--; // If the substring has a length // k then increment count with // current character if (cnt == k) curr++; } // Update max count maxSubStr = Math.max(maxSubStr, curr); } return maxSubStr; } // Driver Code public static void main(String []args) { String s = "aaacaabbaa" ; int k = 2 ; System.out.println(maxSubStrings(s, k)); } } // This code is contributed by // tufan_gupta2000 |
Python3
# Python 3 implementation of the approach # Function to return the count # of the required sub-strings def maxSubStrings(s, k): maxSubStr = 0 n = len (s) # Iterate over all characters for c in range ( 27 ): ch = chr ( ord ( 'a' ) + c) # Count with current character curr = 0 for i in range (n - k): if (s[i] ! = ch): continue cnt = 0 while (i < n and s[i] = = ch and cnt ! = k): i + = 1 cnt + = 1 i - = 1 # If the substring has a length k then # increment count with current character if (cnt = = k): curr + = 1 # Update max count maxSubStr = max (maxSubStr, curr) return maxSubStr # Driver Code if __name__ = = '__main__' : s = "aaacaabbaa" k = 2 print (maxSubStrings(s, k)) # This code is contributed by # Surendra_Gangwar |
C#
// C# implementation of the approach using System; class GFG { // Function to return the count // of the required sub-strings static int maxSubStrings(String s, int k) { int maxSubStr = 0, n = s.Length; // Iterate over all characters for ( int c = 0; c < 26; c++) { char ch = ( char )(( int ) 'a' + c); // Count with current character int curr = 0; for ( int i = 0; i <= n - k; i++) { if (s[i] != ch) continue ; int cnt = 0; while (i < n && s[i] == ch && cnt != k) { i++; cnt++; } i--; // If the substring has a length // k then increment count with // current character if (cnt == k) curr++; } // Update max count maxSubStr = Math.Max(maxSubStr, curr); } return maxSubStr; } // Driver Code public static void Main() { string s = "aaacaabbaa" ; int k = 2; Console.WriteLine(maxSubStrings(s, k)); } } // This code is contributed by Ryuga |
Javascript
<script> // JavaScript implementation of the approach // Function to return the count // of the required sub-strings function maxSubStrings(s, k) { var maxSubStr = 0, n = s.length; // Iterate over all characters for ( var c = 0; c < 26; c++) { var ch = String.fromCharCode( "a" .charCodeAt(0) + c); // Count with current character var curr = 0; for ( var i = 0; i <= n - k; i++) { if (s[i] !== ch) continue ; var cnt = 0; while (i < n && s[i] === ch && cnt !== k) { i++; cnt++; } i--; // If the substring has a length // k then increment count with // current character if (cnt === k) curr++; } // Update max count maxSubStr = Math.max(maxSubStr, curr); } return maxSubStr; } // Driver Code var s = "aaacaabbaa" ; var k = 2; document.write(maxSubStrings(s, k)); </script> |
3
Time Complexity: O(n), where n is the length of the string.
Auxiliary Space: O(1).
Ready to dive in? Explore our Free Demo Content and join our DSA course, trusted by over 100,000 neveropen!