Wednesday, November 20, 2024
Google search engine
HomeData Modelling & AIMaximize volume of cuboid with given sum of sides

Maximize volume of cuboid with given sum of sides

We are given the sum of length, breadth and height, say S, of a cuboid. The task is to find the maximum volume that can be achieved so that sum of side is S. 
Volume of a cuboid = length * breadth * height 
Examples : 
 

Input : s  = 4
Output : 2
Only possible dimensions are some combination of 1, 1, 2.

Input : s = 8
Output : 18
All possible edge dimensions:
[1, 1, 6], volume = 6
[1, 2, 5], volume = 10
[1, 3, 4], volume = 12
[2, 2, 4], volume = 16
[2, 3, 3], volume = 18

 

Recommended Practice

Method 1: (Brute Force) 
The idea to run three nested, one for length, one for breadth and one for height. For each iteration, calculate the volume and compare with maximum volume.
Below is the implementation of this approach: 
 

C++




#include <bits/stdc++.h>
using namespace std;
 
// Return the maximum volume.
int maxvolume(int s)
{
    int maxvalue = 0;
 
    // for length
    for (int i = 1; i <= s - 2; i++) {
 
        // for breadth
        for (int j = 1; j <= s - 1; j++) {
 
            // for height
            int k = s - i - j;
 
            // calculating maximum volume.
            maxvalue = max(maxvalue, i * j * k);
        }
    }
 
    return maxvalue;
}
 
// Driven Program
int main()
{
    int s = 8;
    cout << maxvolume(s) << endl;
    return 0;
}


Java




// Java code to Maximize volume of
// cuboid with given sum of sides
 
class GFG
{
     
    // Return the maximum volume.
    static int maxvolume(int s)
    {
        int maxvalue = 0;
     
        // for length
        for (int i = 1; i <= s - 2; i++)
        {
     
            // for breadth
            for (int j = 1; j <= s - 1; j++)
            {
     
                // for height
                int k = s - i - j;
     
                // calculating maximum volume.
                maxvalue = Math.max(maxvalue, i * j * k);
            }
        }
     
        return maxvalue;
    }
    // Driver function
    public static void main (String[] args)
    {
        int s = 8;
        System.out.println(maxvolume(s));
    }
}
 
// This code is contributed by Anant Agarwal.


Python3




# Python3 code to Maximize volume of
# cuboid with given sum of sides
 
# Return the maximum volume.
def maxvolume (s):
    maxvalue = 0
 
    # for length
    i = 1
    for i in range(s - 1):
        j = 1
         
        # for breadth
        for j in range(s):
             
            # for height
            k = s - i - j
             
            # calculating maximum volume.
            maxvalue = max(maxvalue, i * j * k)
             
    return maxvalue
     
# Driven Program
s = 8
print(maxvolume(s))
 
# This code is contributed by "Sharad_Bhardwaj".


C#




// C# code to Maximize volume of
// cuboid with given sum of sides
using System;
 
class GFG
{
     
    // Return the maximum volume.
    static int maxvolume(int s)
    {
        int maxvalue = 0;
     
        // for length
        for (int i = 1; i <= s - 2; i++)
        {
     
            // for breadth
            for (int j = 1; j <= s - 1; j++)
            {
     
                // for height
                int k = s - i - j;
     
                // calculating maximum volume.
                maxvalue = Math.Max(maxvalue, i * j * k);
            }
        }
     
        return maxvalue;
    }
     
     
    // Driver function
    public static void Main ()
    {
        int s = 8;
        Console.WriteLine(maxvolume(s));
    }
}
 
// This code is contributed by vt_m.


PHP




<?php
// PHP code to Maximize volume of
// cuboid with given sum of sides
 
// Return the maximum volume.
function maxvolume( $s)
{
    $maxvalue = 0;
 
    // for length
    for ( $i = 1; $i <= $s - 2; $i++)
    {
 
        // for breadth
        for ( $j = 1; $j <= $s - 1; $j++)
        {
 
            // for height
            $k = $s - $i - $j;
 
            // calculating maximum volume.
            $maxvalue = max($maxvalue,
                            $i * $j * $k);
        }
    }
 
    return $maxvalue;
}
 
// Driver Code
$s = 8;
echo(maxvolume($s));
 
// This code is contributed by vt_m.
?>


Javascript




<script>
// javascript code to Maximize volume of
// cuboid with given sum of sides
 
// Return the maximum volume.
function maxvolume( s)
{
    let maxvalue = 0;
 
    // for length
    for (let i = 1; i <= s - 2; i++)
    {
 
        // for breadth
        for (let j = 1; j <= s - 1; j++)
        {
 
            // for height
            let k = s - i - j;
 
            // calculating maximum volume.
            maxvalue = Math.max(maxvalue, i * j * k);
        }
    }
    return maxvalue;
}
 
// Driver code
    let s = 8;
   document.write(maxvolume(s));
    
    // This code is contributed by gauravrajput1
</script>


Output : 
 

18

Time Complexity: O(n2)
Auxiliary Space: O(1)
 
Method 2: (Efficient approach) 
The idea is to divide edges as equally as possible. 
So, 
length = floor(s/3) 
width = floor((s – length)/2) = floor((s – floor(s/3)/2) 
height = s – length – width = s – floor(s/3) – floor((s – floor(s/3))/2)
Below is the implementation of this approach: 
 

C++




#include <bits/stdc++.h>
using namespace std;
 
// Return the maximum volume.
int maxvolume(int s)
{
    // finding length
    int length = s / 3;
 
    s -= length;
 
    // finding breadth
    int breadth = s / 2;
 
    // finding height
    int height = s - breadth;
 
    return length * breadth * height;
}
 
// Driven Program
int main()
{
    int s = 8;
    cout << maxvolume(s) << endl;
    return 0;
}


Java




// Java code to Maximize volume of
// cuboid with given sum of sides
import java.io.*;
 
class GFG
{
    // Return the maximum volume.
    static int maxvolume(int s)
    {
        // finding length
        int length = s / 3;
     
        s -= length;
     
        // finding breadth
        int breadth = s / 2;
     
        // finding height
        int height = s - breadth;
     
        return length * breadth * height;
    }
     
    // Driven Program
    public static void main (String[] args)
    {
        int s = 8;
        System.out.println ( maxvolume(s));
                 
    }
}
 
// This code is contributed by vt_m.


Python3




# Python3 code to Maximize volume of
# cuboid with given sum of sides
 
# Return the maximum volume.
def maxvolume( s ):
 
    # finding length
    length = int(s / 3)
     
    s -= length
     
    # finding breadth
    breadth = s / 2
     
    # finding height
    height = s - breadth
     
    return int(length * breadth * height)
     
# Driven Program
s = 8
print( maxvolume(s) )
 
# This code is contributed by "Sharad_Bhardwaj".


C#




// C# code to Maximize volume of
// cuboid with given sum of sides
using System;
 
class GFG
{
    // Return the maximum volume.
    static int maxvolume(int s)
    {
        // finding length
        int length = s / 3;
     
        s -= length;
     
        // finding breadth
        int breadth = s / 2;
     
        // finding height
        int height = s - breadth;
     
        return length * breadth * height;
    }
     
    // Driven Program
    public static void Main ()
    {
        int s = 8;
        Console.WriteLine( maxvolume(s));
                 
    }
}
 
// This code is contributed by vt_m.


PHP




<?php
// Return the maximum volume.
function maxvolume($s)
{
    // finding length
    $length = (int)($s / 3);
 
    $s -= $length;
 
    // finding breadth
    $breadth = (int)($s / 2);
 
    // finding height
    $height = $s - $breadth;
 
    return $length * $breadth * $height;
}
 
// Driven Code
$s = 8;
echo(maxvolume($s));
 
// This code is contributed by Ajit.
?>


Javascript




<script>
 
// Return the maximum volume.
function maxvolume( s)
{
 
    // finding length
    let length = parseInt(s / 3);
    s -= length;
 
    // finding breadth
    let breadth = parseInt(s / 2);
 
    // finding height
    let height = s - breadth;
    return length * breadth * height;
}
 
// Driven Program
let s = 8;
    document.write(maxvolume(s));
 
// This code is contributed by aashish1995
 
</script>


Output : 
 

18

Time Complexity: O(1)
Auxiliary Space: O(1)
How does this work? 
 

We basically need to maximize product of 
three numbers, x, y and z whose sum is given.
Given s = x + y + z 
Maximize P = x * y * z 
= x * y * (s – x – y) 
= x*y*s – x*x*s – x*y*y
We get dp/dx = sy – 2xy – y*y 
and dp/dy = sx – 2xy – x*x 
We get dp/dx = 0 and dp/dy = 0 when 
x = s/3, y = s/3 
So z = s – x – y = s/3

Please suggest if someone has a better solution which is more efficient in terms of space and time.
Please write comments if you find anything incorrect, or you want to share more information about the topic discussed above
 

Feeling lost in the world of random DSA topics, wasting time without progress? It’s time for a change! Join our DSA course, where we’ll guide you on an exciting journey to master DSA efficiently and on schedule.
Ready to dive in? Explore our Free Demo Content and join our DSA course, trusted by over 100,000 neveropen!

RELATED ARTICLES

Most Popular

Recent Comments