Tuesday, November 19, 2024
Google search engine
HomeData Modelling & AIMax Heap in JavaScript

Max Heap in JavaScript

A max-heap is a complete binary tree in which the value in each internal node is greater than or equal to the values in the children of that node. Mapping the elements of a heap into an array is trivial: if a node is stored at index k, then its left child is stored at index 2k + 1 and its right child at index 2k + 2.

Max Heap in JavaScript

Max Heap in JavaScript

How is Max Heap represented? 

A-Max Heap is a Complete Binary Tree. A-Max heap is typically represented as an array. The root element will be at Arr[0]. Below table shows indexes of other nodes for the ith node, i.e., Arr[i]: 

Arr[(i-1)/2] Returns the parent node. 
Arr[(2*i)+1] Returns the left child node. 
Arr[(2*i)+2] Returns the right child node.

Operations of Heap Data Structure:

  • Heapify: a process of creating a heap from an array.
  • Insertion: process to insert an element in existing heap time complexity O(log N).
  • Deletion: deleting the top element of the heap or the highest priority element, and then organizing the heap and returning the element with time complexity O(log N).
  • Peek: to check or find the most prior element in the heap, (max or min element for max and min heap).

Explanation: Now let us understand how the various helper methods maintain the order of the heap

  • The helper methods like rightChild, leftChild, parent  help us to get the element and its children at the specified index.
  • The add() and remove() methods handle the insertion and deletion process
  • The heapifyDown() method maintains the heap structure when an element is deleted.
  • The heapifyUp() method maintains the heap structure when an element is added to the heap. 
  • The peek() method returns the root element of the heap and swap() method interchanges value at two nodes.

Example: In this example, we will implement the Max Heap data structure.

Javascript




class MaxHeap {
 constructor() {
     this.heap = [];
 }
 
 // Helper Methods
 getLeftChildIndex(parentIndex) { return 2 * parentIndex + 1; }
 getRightChildIndex(parentIndex) { return 2 * parentIndex + 2; }
 
 getParentIndex(childIndex) {
     return Math.floor((childIndex - 1) / 2);
 }
 
 hasLeftChild(index) {
     return this.getLeftChildIndex(index) < this.heap.length;
 }
 
 hasRightChild(index) {
     return this.getRightChildIndex(index) < this.heap.length;
 }
 
 hasParent(index) {
     return this.getParentIndex(index) >= 0;
 }
 
 leftChild(index) {
     return this.heap[this.getLeftChildIndex(index)];
 }
 
 rightChild(index) {
     return this.heap[this.getRightChildIndex(index)];
 }
 
 parent(index) {
     return this.heap[this.getParentIndex(index)];
 }
 
 swap(indexOne, indexTwo) {
     const temp = this.heap[indexOne];
     this.heap[indexOne] = this.heap[indexTwo];
     this.heap[indexTwo] = temp;
 }
 
 peek() {
     if (this.heap.length === 0) {
         return null;
     }
     return this.heap[0];
 }
  
 // Removing an element will remove the
 // top element with highest priority then
 // heapifyDown will be called
 remove() {
     if (this.heap.length === 0) {
         return null;
     }
     const item = this.heap[0];
     this.heap[0] = this.heap[this.heap.length - 1];
     this.heap.pop();
     this.heapifyDown();
     return item;
 }
 
 add(item) {
     this.heap.push(item);
     this.heapifyUp();
 }
 
 heapifyUp() {
     let index = this.heap.length - 1;
     while (this.hasParent(index) && this.parent(index) < this.heap[index]) {
         this.swap(this.getParentIndex(index), index);
         index = this.getParentIndex(index);
     }
 }
 
 heapifyDown() {
     let index = 0;
     while (this.hasLeftChild(index)) {
         let largerChildIndex = this.getLeftChildIndex(index);
         if (this.hasRightChild(index) && this.rightChild(index) > this.leftChild(index)) {
             largerChildIndex = this.getRightChildIndex(index);
         }
         if (this.heap[index] > this.heap[largerChildIndex]) {
             break;
         } else {
             this.swap(index, largerChildIndex);
         }
         index = largerChildIndex;
     }
 }
  
 printHeap() {
     var heap =` ${this.heap[0]} `
     for(var i = 1; i<this.heap.length;i++) {
         heap += ` ${this.heap[i]} `;
     }
     console.log(heap);
 }
}
 
// Creating the Heap
var heap = new MaxHeap();
 
// Adding The Elements
heap.add(10);
heap.add(15);
heap.add(30);
heap.add(40);
heap.add(50);
heap.add(100);
heap.add(40);
 
// Printing the Heap
heap.printHeap();
 
// Peeking And Removing Top Element
console.log(heap.peek());
console.log(heap.remove());
 
// Printing the Heap
// After Deletion.
heap.printHeap();


Output

 100  40  50  10  30  15  40 
100
100
 50  40  40  10  30  15 

Feeling lost in the world of random DSA topics, wasting time without progress? It’s time for a change! Join our DSA course, where we’ll guide you on an exciting journey to master DSA efficiently and on schedule.
Ready to dive in? Explore our Free Demo Content and join our DSA course, trusted by over 100,000 neveropen!

RELATED ARTICLES

Most Popular

Recent Comments