Tuesday, November 26, 2024
Google search engine
HomeData Modelling & AIMathematics | Area of the surface of solid of revolution

Mathematics | Area of the surface of solid of revolution


Consider a plane y=f(x) in the x-y plane between ordinates x=a and x=b. If a certain portion of this curve is revolved about an axis, a solid of revolution is generated.

We can calculate the area of this revolution in various ways such as:

  1. Cartesian Form:

    • Area of solid formed by revolving the arc of curve about x-axis is-
      S= \int_{x=a}^{x=b} 2\pi y\sqrt{1+(\frac{dy}{dx})^2}dx
    • Area of revolution by revolving the curve about y axis is-
      S= \int_{y=c}^{y=d} 2\pi x \sqrt{1+(\frac{dx}{dy})^2}dy
  2. Parametric Form: x=x(t), y=y(t)

    • About x-axis:
      S=\int_{t=t_{1}}^{t=t_{2}} 2\pi y(t) \sqrt{(\frac{dx}{dt})^2+(\frac{dy}{dt})^2}dt
    • About y-axis:
      S=\int_{t=t_{1}}^{t=t_{2}} 2\pi x(t) \sqrt{(\frac{dx}{dt})^2+(\frac{dy}{dt})^2}dt
  3. Polar Form: r=f(θ)

    • About the x-axis: initial line  \theta = \frac{\pi}{2}
      S= \int_{\theta=\theta_1}^{\theta _2}2\pi y\frac{ds}{d\theta}d\theta
      =\int_{\theta=\theta_1}^{\theta _2}2\pi (r sin\theta) \sqrt{r^2+(\frac {dr}{d\theta})^2}d\theta
      Here replace r by f(θ)
    • About the y-axis:
      S= \int_{\theta=\theta_1}^{\theta _2}2\pi x\frac{ds}{d\theta}d\theta
      =\int_{\theta=\theta_1}^{\theta _2}2\pi (r cos\theta) \sqrt{r^2+(\frac {dr}{d\theta})^2}d\theta
      Here replace r by f(θ)
  4. About any axis or line L: S= \int 2\pi (PM) ds where PM is the perpendicular distance of a point P of the curve to the given axis.

    • Limits for x: x = a to x = b
      S=\int_{x=a}^{x=b} 2\pi (PM)\sqrt{1+(\frac{dy}{dx})^2}dx
      Here PM is in terms of x.
    • Limits for y: y = c to y = d
      S= \int_{y=c}^{y=d} 2\pi (PM)\sqrt{1+(\frac{dx}{dy})^2}dy
      Here PM is in terms of y.
  5. Example:
    Find the area of the solid of revolution generated by revolving the parabola y^2=4ax, 0\leq x \leq 3a about the x-axis.
    Explanation:
    Now we are given with the Cartesian form of the equation of parabola and the parabola has been rotated about the x-axis. Hence we use the formula for revolving Cartesian form about x-axis which is:

    S= \int_{x=a}^{x=b} 2\pi y\sqrt{1+(\frac{dy}{dx})^2}dx

    Here y^2= 4ax. Now we need to calculate dy/dx

    Differentiating w.r.t x we get:

    2yy'= 4a

    y'=\frac{2a}{y}

    1+(y')^2=1+\frac {4a^2}{y^2}=\frac{y^2+4a^2}{y^2}

    Using y^2=4ax

    \sqrt {1+(y')^2}=\sqrt{\frac{4ax+4a^2}{y^2}}=\frac{2\sqrt a}{y}\sqrt {a+x}

    Now we are provided with limits of x as x=0 to x=3. Plugging our calculated values in the above formula we get:

    S=\int_{0}^{3a} 2\pi y.{\frac{2\sqrt a}{y}\sqrt {a+x}}dx

    =2\pi\int_{0}^{3a} y.{\frac{2\sqrt a}{y}\sqrt {a+x}}dx

    =4\pi\sqrt a\int_{0}^{3a}\sqrt {a+x}

    =4\pi\sqrt a\int_{0}^{3a}\frac{2}{3}(x+a)^{3/2}\Biggr|_{0}^{3a}

    =\frac{8}{3}\pi\sqrt a ((4a)^{3/2}-(a)^{3/2})

    =\frac{8}{3}\pi\sqrt a.a^{3/2}(8-1)

    =\frac{56\pi a^2}{3} sq. units

    Feeling lost in the world of random DSA topics, wasting time without progress? It’s time for a change! Join our DSA course, where we’ll guide you on an exciting journey to master DSA efficiently and on schedule.
    Ready to dive in? Explore our Free Demo Content and join our DSA course, trusted by over 100,000 neveropen!

RELATED ARTICLES

Most Popular

Recent Comments