Given an array of pairs A[][] of size N, the task is to find the longest subsequences where the first element is increasing and the second element is decreasing.
Examples:
Input: A[]={{1, 2}, {2, 2}, {3, 1}}, N = 3
Output: 2
Explanation: The longest subsequence satisfying the conditions is of length 2 and consists of {1, 2} and {3, 1};Input: A[] = {{1, 3}, {2, 5}, {3, 2}, {5, 2}, {4, 1}}, N = 5
Output: 3
Naive Approach: The simplest approach is to use Recursion. For every pair in the array, there are two possible choices, i.e. either to include the current pair in the subsequence or not. Therefore, iterate over the array recursively and find the required longest subsequence.
Below is the implementation of the above approach:
C++
// C++ program for the above approach #include <bits/stdc++.h> using namespace std; // Recursive function to find the length of // the longest subsequence of pairs whose first // element is increasing and second is decreasing int longestSubSequence(pair< int , int > A[], int N, int ind = 0, int lastf = INT_MIN, int lasts = INT_MAX) { // Base case if (ind == N) return 0; // Not include the current pair // in the longest subsequence int ans = longestSubSequence(A, N, ind + 1, lastf, lasts); // Including the current pair // in the longest subsequence if (A[ind].first > lastf && A[ind].second < lasts) ans = max(ans, longestSubSequence(A, N, ind + 1, A[ind].first, A[ind].second) + 1); return ans; } // Driver Code int main() { // Given Input pair< int , int > A[] = { { 1, 2 }, { 2, 2 }, { 3, 1 } }; int N = sizeof (A) / sizeof (A[0]); // Function Call cout << longestSubSequence(A, N) << "\n" ; return 0; } |
Java
// Java program for the above approach import java.io.*; class GFG{ // Recursive function to find the length of // the longest subsequence of pairs whose first // element is increasing and second is decreasing public static Integer longestSubSequence( int [][] A, int N, int ind, int lastf, int lasts) { ind = (ind > 0 ? ind : 0 ); lastf = (lastf > 0 ? lastf: Integer.MIN_VALUE); lasts = (lasts > 0 ? lasts: Integer.MAX_VALUE); // Base case if (ind == N) return 0 ; // Not include the current pair // in the longest subsequence int ans = longestSubSequence(A, N, ind + 1 , lastf, lasts); // Including the current pair // in the longest subsequence if (A[ind][ 0 ] > lastf && A[ind][ 1 ] < lasts) ans = Math.max(ans, longestSubSequence(A, N, ind + 1 , A[ind][ 0 ], A[ind][ 1 ]) + 1 ); return ans; } public static int longestSubSequence( int [][] A, int N) { return longestSubSequence(A, N, 0 , 0 , 0 ); } // Driver Code public static void main(String args[]) { // Given Input int [][] A = { { 1 , 2 }, { 2 , 2 }, { 3 , 1 } }; int N = A.length; // Function Call System.out.println(longestSubSequence(A, N)); } } // This code is contributed by _saurabh_jaiswal |
Python3
# Python 3 program for the above approach import sys # Recursive function to find the length of # the longest subsequence of pairs whose first # element is increasing and second is decreasing def longestSubSequence(A, N, ind = 0 , lastf = - sys.maxsize - 1 , lasts = sys.maxsize): # Base case if (ind = = N): return 0 # Not include the current pair # in the longest subsequence ans = longestSubSequence(A, N, ind + 1 , lastf, lasts) # Including the current pair # in the longest subsequence if (A[ind][ 0 ] > lastf and A[ind][ 1 ] < lasts): ans = max (ans, longestSubSequence(A, N, ind + 1 , A[ind][ 0 ], A[ind][ 1 ]) + 1 ) return ans # Driver Code if __name__ = = "__main__" : # Given Input A = [[ 1 , 2 ], [ 2 , 2 ], [ 3 , 1 ]] N = len (A) # Function Call print (longestSubSequence(A, N)) # This code is contributed by ukasp. |
C#
// C# program for the above approach using System; class GFG{ // Recursive function to find the length of // the longest subsequence of pairs whose first // element is increasing and second is decreasing public static int longestSubSequence( int [,] A, int N, int ind, int lastf, int lasts) { ind = (ind > 0 ? ind : 0); lastf = (lastf > 0 ? lastf: Int32.MinValue); lasts = (lasts > 0 ? lasts: Int32.MaxValue); // Base case if (ind == N) return 0; // Not include the current pair // in the longest subsequence int ans = longestSubSequence(A, N, ind + 1, lastf, lasts); // Including the current pair // in the longest subsequence if (A[ind, 0] > lastf && A[ind, 1] < lasts) ans = Math.Max(ans, longestSubSequence(A, N, ind + 1, A[ind, 0], A[ind, 1]) + 1); return ans; } public static int longestSubSequence( int [,] A, int N) { return longestSubSequence(A, N, 0, 0, 0); } // Driver Code public static void Main() { // Given Input int [,] A = { { 1, 2 }, { 2, 2 }, { 3, 1 } }; int N = A.GetLength(0); // Function Call Console.Write(longestSubSequence(A, N)); } } // This code is contributed by target_2. |
Javascript
<script> // JavaScript program for the above approach // Function to find the length of the // longest subsequence of pairs whose first // element is increasing and second is decreasing function longestSubSequence(A, N) { // dp[i]: Stores the longest // subsequence upto i let dp = new Array(N); for (let i = 0; i < N; i++) { // Base case dp[i] = 1; for (let j = 0; j < i; j++) { // When the conditions hold if (A[j][0] < A[i][0] && A[j][1] > A[i][1]) { dp[i] = Math.max(dp[i], dp[j] + 1); } } } // Finally, print the required answer document.write(dp[N - 1] + "<br>" ); } // Driver Code // Given Input let A = [ [ 1, 2 ], [ 2, 2 ], [ 3, 1 ] ]; let N = A.length; // Function Call longestSubSequence(A, N); </script> |
2
Time Complexity: O(2N)
Auxiliary Space: O(1)
Efficient Approach: This problem has Overlapping Subproblems property and Optimal Substructure property. Therefore, this problem can be solved using Dynamic Programming. Like other typical Dynamic Programming (DP) problems, recomputation of same subproblems can be avoided by constructing a temporary array that stores the results of the subproblems.
Follow the steps below to solve this problem:
- Initialize a dp[] array, where dp[i] stores the length of the longest subsequence that can be formed using elements up to index i.
- Iterate over the range [0, N-1] using variable i:
- Base case: Update dp[i] as 1.
- Iterate over the range [0, i – 1] using a variable j:
- If A[j].first is less than A[i].first and A[j].second is greater than A[i].second, then update dp[i] as maximum of dp[i] and dp[j] + 1.
- Finally, print dp[N-1].
Below is the implementation of the above approach:
C++
// C++ program for the above approach #include <bits/stdc++.h> using namespace std; // Function to find the length of the // longest subsequence of pairs whose first // element is increasing and second is decreasing void longestSubSequence(pair< int , int > A[], int N) { // dp[i]: Stores the longest // subsequence upto i int dp[N]; for ( int i = 0; i < N; i++) { // Base case dp[i] = 1; for ( int j = 0; j < i; j++) { // When the conditions hold if (A[j].first < A[i].first && A[j].second > A[i].second) { dp[i] = max(dp[i], dp[j] + 1); } } } // Finally, print the required answer cout << dp[N - 1] << endl; } // Driver Code int main() { // Given Input pair< int , int > A[] = { { 1, 2 }, { 2, 2 }, { 3, 1 } }; int N = sizeof (A) / sizeof (A[0]); // Function Call longestSubSequence(A, N); return 0; } |
Java
// Java program for the above approach import java.io.*; class GFG{ // Function to find the length of the // longest subsequence of pairs whose first // element is increasing and second is decreasing public static void longestSubSequence( int [][] A, int N) { // dp[i]: Stores the longest // subsequence upto i int [] dp = new int [N]; for ( int i = 0 ; i < N; i++) { // Base case dp[i] = 1 ; for ( int j = 0 ; j < i; j++) { // When the conditions hold if (A[j][ 0 ] < A[i][ 0 ] && A[j][ 1 ] > A[i][ 1 ]) { dp[i] = Math.max(dp[i], dp[j] + 1 ); } } } // Finally, print the required answer System.out.println(dp[N - 1 ]); } // Driver Code public static void main(String args[]) { // Given Input int [][] A = { { 1 , 2 }, { 2 , 2 }, { 3 , 1 } }; int N = A.length; // Function Call longestSubSequence(A, N); } } // This code is contributed by gfgking |
Python3
# Python3 program for the above approach # Function to find the length of the # longest subsequence of pairs whose first # element is increasing and second is decreasing def longestSubSequence(A, N): # dp[i]: Stores the longest # subsequence upto i dp = [ 0 ] * N for i in range (N): # Base case dp[i] = 1 for j in range (i): # When the conditions hold if (A[j][ 0 ] < A[i][ 0 ] and A[j][ 1 ] > A[i][ 1 ]): dp[i] = max (dp[i], dp[j] + 1 ) # Finally, print the required answer print (dp[N - 1 ]) # Driver Code if __name__ = = '__main__' : #Given Input A = [ [ 1 , 2 ], [ 2 , 2 ], [ 3 , 1 ] ] N = len (A) #Function Call longestSubSequence(A, N) # This code is contributed by mohit kumar 29. |
C#
// C# program for the above approach using System; class GFG { // Function to find the length of the // longest subsequence of pairs whose first // element is increasing and second is decreasing static void longestSubSequence( int [,] A, int N) { // dp[i]: Stores the longest // subsequence upto i int [] dp = new int [N]; for ( int i = 0; i < N; i++) { // Base case dp[i] = 1; for ( int j = 0; j < i; j++) { // When the conditions hold if (A[j,0] < A[i,0] && A[j,1] > A[i,1]) { dp[i] = Math.Max(dp[i], dp[j] + 1); } } } // Finally, print the required answer Console.Write(dp[N - 1]); } static void Main() { // Given Input int [,] A = { { 1, 2 }, { 2, 2 }, { 3, 1 } }; int N = A.GetLength(0); // Function Call longestSubSequence(A, N); } } // This code is contributed by decode2207. |
Javascript
<script> // JavaScript program for the above approach // Function to find the length of the // longest subsequence of pairs whose first // element is increasing and second is decreasing function longestSubSequence(A, N) { // dp[i]: Stores the longest // subsequence upto i let dp = new Array(N); for (let i = 0; i < N; i++) { // Base case dp[i] = 1; for (let j = 0; j < i; j++) { // When the conditions hold if (A[j][0] < A[i][0] && A[j][1] > A[i][1]) { dp[i] = Math.max(dp[i], dp[j] + 1); } } } // Finally, print the required answer document.write(dp[N - 1] + "<br>" ); } // Driver Code // Given Input let A = [[1, 2], [2, 2], [3, 1]]; let N = A.length; // Function Call longestSubSequence(A, N); </script> |
2
Time Complexity: O(N2)
Auxiliary Space: O(N)
Ready to dive in? Explore our Free Demo Content and join our DSA course, trusted by over 100,000 neveropen!