Monday, November 18, 2024
Google search engine
HomeData Modelling & AILexicographically smallest string after M operations

Lexicographically smallest string after M operations

Given a string S and integer M. The task is to perform exactly M operations to get lexicographical smallest string.

  • In each operation, select one character optimally from the string and update it with immediate next character ( aaa -> aab ), so that string remain lexicographical smallest.
  • Multiple operations are allowed over single character of the string.

Note: Consider next of ‘z’ as ‘a’.
Examples:

Input: S = “aazzx”, M = 6 
Output: aaaab 
Explanation: 
We try to form lexicographical smallest string for each operations. 
For m = 1: update “aazzx” to “aaazx” 
for m = 2: update “aaazx” to “aaaax” 
for m = 3: update “aaaax” to “aaaay” 
for m = 4: update “aaaay” to “aaaaz” 
for m = 5: update “aaaaz” to “aaaaa” 
for m = 6: update “aaaaa” to “aaaab” which is lexicographical smallest than “aaaba”, “aabaa”, “abaaa”, “baaaa”. 
Final string after 6 operations: “aaaab”.
Input: S = “z”, M = 27 
Output:
Explanation: 
Try to form lexicographical smallest string for each operations, since there is only single character so all 27 operations have to performed over it. Final string after 27 operation is “a”.

Approach: The idea is to implement a simple greedy approach, to iterate the string from the starting of the string and while iterating focus on the current element of the string to make it as small as possible.

  • Suppose, current element is r, to make r smallest i.e. a, it require 9 operations, let call the value as distance.
  • Now, check if M is greater than equal to the distance, then update current character to ‘a’ and decrease the value of M by distance. Otherwise continue with next iteration.
  • As next of z is a, cycle of 26 is formed. So the last character of the string, can be updated with last character + (M % 26).

Below is the implementation of the above approach:

C++




// C++ implementation to find the
// lexicographical smallest string
// after performing M operations
 
#include <bits/stdc++.h>
using namespace std;
 
// Function to find the
// lexicographical smallest string
// after performing M operations
void smallest_string(string s, int m)
{
 
    // Size of the given string
    int n = s.size();
 
    // Declare an array a
    int a[n];
 
    // For each i, a[i] contain number
    // of operations to update s[i] to 'a'
    for (int i = 0; i < n; i++) {
        int distance = s[i] - 'a';
        if (distance == 0)
            a[i] = 0;
 
        else
            a[i] = 26 - distance;
    }
 
    for (int i = 0; i < n; i++) {
        // Check if m >= ar[i],
        // then update s[i] to 'a'
        // decrement k by a[i]
        if (m >= a[i]) {
            s[i] = 'a';
            m = m - a[i];
        }
    }
 
    // Form a cycle of 26
    m = m % 26;
 
    // update last element of
    // string with the value
    // s[i] + (k % 26)
    s[n - 1] = s[n - 1] + m;
 
    // Return the answer
    cout << s;
}
 
// Driver code
int main()
{
    string str = "aazzx";
    int m = 6;
    smallest_string(str, m);
    return 0;
}


Java




// Java implementation to find the
// lexicographical smallest String
// after performing M operations
class GFG{
 
// Function to find the
// lexicographical smallest String
// after performing M operations
static void smallest_String(char []s, int m)
{
 
    // Size of the given String
    int n = s.length;
 
    // Declare an array a
    int []a = new int[n];
 
    // For each i, a[i] contain number
    // of operations to update s[i] to 'a'
    for (int i = 0; i < n; i++)
    {
        int distance = s[i] - 'a';
        if (distance == 0)
            a[i] = 0;
 
        else
            a[i] = 26 - distance;
    }
 
    for (int i = 0; i < n; i++)
    {
        // Check if m >= ar[i],
        // then update s[i] to 'a'
        // decrement k by a[i]
        if (m >= a[i])
        {
            s[i] = 'a';
            m = m - a[i];
        }
    }
 
    // Form a cycle of 26
    m = m % 26;
 
    // update last element of
    // String with the value
    // s[i] + (k % 26)
    s[n - 1] = (char) (s[n - 1] + m);
 
    // Return the answer
    System.out.print(String.valueOf(s));
}
 
// Driver code
public static void main(String[] args)
{
    String str = "aazzx";
    int m = 6;
    smallest_String(str.toCharArray(), m);
}
}
 
// This code is contributed by Princi Singh


Python3




# Python3 implementation to find the
# lexicographical smallest string
# after performing M operations
 
# Function to find the
# lexicographical smallest string
# after performing M operations
def smallest_string(s, m):
     
    # Size of the given string
    n = len(s);
     
    l = list(s)
 
    # Declare an array a
    a = [0] * n;
 
    # For each i, a[i] contain number
    # of operations to update s[i] to 'a'
    for i in range(n):
        distance = ord(s[i]) - ord('a');
         
        if (distance == 0):
            a[i] = 0;
        else:
            a[i] = 26 - distance;
     
    for i in range(n):
         
        # Check if m >= ar[i],
        # then update s[i] to 'a'
        # decrement k by a[i]
        if (m >= a[i]):
            l[i] = 'a';
            m = m - a[i];
         
    # Form a cycle of 26
    m = m % 26;
 
    # update last element of
    # with the value
    # s[i] + (k % 26)
     
    # Return the answer
    for i in range(len(l) - 1):
        print(l[i], end = "")
     
    print(chr(ord(l[n - 1]) + m))
 
# Driver code
str = "aazzx";
m = 6;
 
smallest_string(str, m);
 
# This code is contributed by grand_master


C#




// C# implementation to find the
// lexicographical smallest String
// after performing M operations
using System;
 
class GFG{
 
// Function to find the
// lexicographical smallest String
// after performing M operations
static void smallest_String(char []s, int m)
{
     
    // Size of the given String
    int n = s.Length;
 
    // Declare an array a
    int []a = new int[n];
 
    // For each i, a[i] contain number
    // of operations to update s[i] to 'a'
    for(int i = 0; i < n; i++)
    {
        int distance = s[i] - 'a';
        if (distance == 0)
            a[i] = 0;
        else
            a[i] = 26 - distance;
    }
 
    for(int i = 0; i < n; i++)
    {
         
        // Check if m >= ar[i],
        // then update s[i] to 'a'
        // decrement k by a[i]
        if (m >= a[i])
        {
            s[i] = 'a';
            m = m - a[i];
        }
    }
 
    // Form a cycle of 26
    m = m % 26;
 
    // Update last element of
    // String with the value
    // s[i] + (k % 26)
    s[n - 1] = (char)(s[n - 1] + m);
 
    // Return the answer
    Console.Write(String.Join("", s));
}
 
// Driver code
public static void Main(String[] args)
{
    String str = "aazzx";
    int m = 6;
     
    smallest_String(str.ToCharArray(), m);
}
}
 
// This code is contributed by Princi Singh


Javascript




<script>
 
// JavaScript implementation to find the
// lexicographical smallest string
// after performing M operations
 
 
// Function to find the
// lexicographical smallest string
// after performing M operations
function smallest_string(s,m)
{
 
    // Size of the given string
    let n = s.length;
 
    // Declare an array a
    let a = new Array(n).fill(0);
 
    // For each i, a[i] contain number
    // of operations to update s[i] to 'a'
    for (let i = 0; i < n; i++) {
        let distance = s.charCodeAt(i) - 'a'.charCodeAt(0);
        if (distance == 0)
            a[i] = 0;
 
        else
            a[i] = 26 - distance;
    }
 
    for (let i = 0; i <br n; i++) {
        // Check if m >= ar[i],
        // then update s[i] to 'a'
        // decrement k by a[i]
        if (m >= a[i]) {
            s = s.replace(s[i],'a');
            m = m - a[i];
        }
    }
 
    // Form a cycle of 26
    m = m % 26;
 
    // update last element of
    // string with the value
    // s[i] + (k % 26)
 
    s = s.substring(0,n-1)  + String.fromCharCode(s.charCodeAt(n - 1) + m);
 
    // Return the answer
    document.write(s,"</br>");
}
 
// Driver code
 
let str = "aazzx";
let m = 6;
smallest_string(str, m)
 
// This code is contributed by shinjanpatra
 
</script>


Output:

aaaab

Time Complexity: O(N), where N is the length of given string 
Auxiliary Space: O(N), where N is the length of given string
 

Feeling lost in the world of random DSA topics, wasting time without progress? It’s time for a change! Join our DSA course, where we’ll guide you on an exciting journey to master DSA efficiently and on schedule.
Ready to dive in? Explore our Free Demo Content and join our DSA course, trusted by over 100,000 neveropen!

RELATED ARTICLES

Most Popular

Recent Comments