Given two integers N and K, the task is to generate a permutation of N numbers (Every number from 1 to N occurs exactly once) such that the number of indices where a[i]>a[i+1] is exactly K. Print “Not possible” if no such permutation is possible.
Examples:
Input: N = 5, K = 3 Output: 5 4 3 1 2 Starting 3 indices satisfying the condition a[i] > a[i]+1 Input: N = 7, k = 4 Output: 7 6 5 4 1 2 3
Approach: Since the permutation should be lexicographically smallest with the condition satisfied for k indices i.e. a[i] > a[i+1]. So for that starting K+1 digits should be in decreasing order and the remaining should be in increasing order. So just print the K numbers from N to 1. Then print numbers from 1 to N-K.
For example: N = 6, K = 4
Print K numbers from N to 1 i.e. 6, 5, 4, 3
Print N-K numbers from 1 to N-K i.e. 1, 2
Permutation will be 654312 i.e. Starting 4 indices satisfy a[i] > a[i+1] for i = 1 to k.
Below is the implementation of the above approach:
C++
// C++ implementation of the above approach #include <bits/stdc++.h> using namespace std; void printPermutation( int n, int k) { int i, mx = n; for (i = 1; i <= k; i++) // Decreasing part { cout << mx << " " ; mx--; } for (i = 1; i <= mx; i++) // Increasing part cout << i << " " ; } // Driver Code int main() { int N = 5, K = 3; if (K >= N - 1) cout << "Not Possible" ; else printPermutation(N, K); return 0; } |
Java
// Java implementation of the above approach import java.io.*; class GFG { static void printPermutation( int n, int k) { int i, mx = n; for (i = 1 ; i <= k; i++) // Decreasing part { System.out.print( mx + " " ); mx--; } for (i = 1 ; i <= mx; i++) // Increasing part System.out.print( i + " " ); } // Driver Code public static void main (String[] args) { int N = 5 , K = 3 ; if (K >= N - 1 ) System.out.print( "Not Possible" ); else printPermutation(N, K); } } // This code is contributed by inder_verma.. |
Python3
# Python3 implementation of the # above approach def printPermutation(n, k): mx = n for i in range ( 1 , k + 1 ): # Decreasing part print (mx, end = " " ) mx - = 1 for i in range ( 1 , mx + 1 ): # Increasing part print (i, end = " " ) # Driver Code if __name__ = = "__main__" : N, K = 5 , 3 if K > = N - 1 : print ( "Not Possible" ) else : printPermutation(N, K) # This code is contributed # by Rituraj Jain |
C#
// C# implementation of the above approach using System; class GFG { static void printPermutation( int n, int k) { int i, mx = n; for (i = 1; i <= k; i++) // Decreasing part { Console.Write( mx + " " ); mx--; } for (i = 1; i <= mx; i++) // Increasing part Console.Write( i + " " ); } // Driver Code public static void Main () { int N = 5, K = 3; if (K >= N - 1) Console.WriteLine( "Not Possible" ); else printPermutation(N, K); } } // This code is contributed by inder_verma.. |
PHP
<?php // PHP implementation of the above approach function printPermutation( $n , $k ) { $i ; $mx = $n ; for ( $i = 1; $i <= $k ; $i ++) // Decreasing part { echo $mx , " " ; $mx --; } for ( $i = 1; $i <= $mx ; $i ++) // Increasing part echo $i , " " ; } // Driver Code $N = 5; $K = 3; if ( $K >= $N - 1) echo "Not Possible" ; else printPermutation( $N , $K ); // This code is contributed by inder_verma.. ?> |
Javascript
<script> // javascript implementation of the above approach function printPermutation(n , k) { var i, mx = n; for (i = 1; i <= k; i++) // Decreasing part { document.write( mx + " " ); mx--; } for (i = 1; i <= mx; i++) // Increasing part document.write( i + " " ); } // Driver Code var N = 5, K = 3; if (K >= N - 1) document.write( "Not Possible" ); else printPermutation(N, K); // This code is contributed by 29AjayKumar </script> |
5 4 3 1 2
Time Complexity: O(N)
Ready to dive in? Explore our Free Demo Content and join our DSA course, trusted by over 100,000 neveropen!