Monday, November 18, 2024
Google search engine
HomeData Modelling & AILength of rope tied around three equal circles touching each other

Length of rope tied around three equal circles touching each other

Given r is the radius of three equal circles touching each other. The task is to find the length of the rope tied around the circles as shown below:

Examples: 

Input: r = 7 
Output: 86

Input: r = 14 
Output: 172 
 

Approach: As it can be clearly seen from above image, the part of the length of rope which is not touching the circle is 2r + 2r + 2r = 6r
The part of the rope which is touching the circles make a sector of 120 degrees on each circle. Thus, three sectors of 120 degrees each can be considered as a complete one circle of 360 degrees. 
Therefore, Length of rope touching the circle is 2 * PI * r where PI = 22 / 7 and r is the radius of the circle. 
Hence, the total length of the rope will be ( 2 * PI * r ) + 6r.

Below is the implementation of the above approach:  

C++




// C++ program to find the length
// of rope
#include<bits/stdc++.h>
using namespace std;
#define PI 3.14159265
 
// Function to find the length
// of rope
float length_rope( float r )
{
    return ( ( 2 * PI * r ) + 6 * r );
}
 
// Driver code
int main()
{
    float r = 7;
    cout<<ceil(length_rope( r ))<<endl;
    return 0;
}


C




// C program to find the length
// of rope
#include <stdio.h>
#define PI 3.14159265
 
// Function to find the length
// of rope
float length_rope( float r )
{
    return ( ( 2 * PI * r ) + 6 * r );
}
 
// Driver code
int main()
{
    float r = 7;
    printf("%f",
           length_rope( r ));
    return 0;
}


Java




// Java code to find the length
// of rope
import java.lang.*;
 
class GFG {
 
    static double PI = 3.14159265;
 
    // Function to find the length
    // of rope
    public static double length_rope(double r)
    {
        return ((2 * PI * r) + 6 * r);
    }
 
    // Driver code
    public static void main(String[] args)
    {
        double r = 7;
        System.out.println(length_rope(r));
    }
}


Python3




# Python3 code to find the length
# of rope
PI = 3.14159265
     
# Function to find the length
# of rope
def length_rope( r ):
    return ( ( 2 * PI * r ) + 6 * r )
     
# Driver code
r = 7
print( length_rope( r ))


C#




// C# code to find the length
// of rope
using System;
 
class GFG {
    static double PI = 3.14159265;
 
    // Function to find the length
    // of rope
    public static double length_rope(double r)
    {
        return ((2 * PI * r) + 6 * r);
    }
 
    // Driver code
    public static void Main()
    {
        double r = 7.0;
        Console.Write(length_rope(r));
    }
}


PHP




<?php
// PHP program to find the
// length of rope
$PI = 3.14159265;
 
// Function to find the length
// of rope
function length_rope( $r )
{
    global $PI;
    return ( ( 2 * $PI * $r ) + 6 * $r );
}
 
// Driver code
$r=7;
echo(length_rope( $r ));
?>


Javascript




<script>
 
// Javascript program to find the length
// of rope
const PI = 3.14159265;
 
// Function to find the length
// of rope
function length_rope(r)
{
    return((2 * PI * r) + 6 * r);
}
 
// Driver code
let r = 7;
document.write(Math.ceil(length_rope(r)));
 
// This code is contributed by souravmahato348
 
</script>


Output: 

86

 

Time Complexity: O(1)

Auxiliary Space: O(1)

Feeling lost in the world of random DSA topics, wasting time without progress? It’s time for a change! Join our DSA course, where we’ll guide you on an exciting journey to master DSA efficiently and on schedule.
Ready to dive in? Explore our Free Demo Content and join our DSA course, trusted by over 100,000 neveropen!

RELATED ARTICLES

Most Popular

Recent Comments