Given an array arr[] consisting of N positive integers, the task is to find the length of the longest increasing subsequence consisting of Prime Numbers in the given array.
Examples:
Input: arr[] = {1, 2, 5, 3, 2, 5, 1, 7}
Output: 4
Explanation:
The Longest Increasing Prime Subsequence is {2, 3, 5, 7}.
Therefore, the answer is 4.Input: arr[] = {6, 11, 7, 13, 9, 25}
Output: 2
Explanation:
The Longest Increasing Prime Subsequence is {11, 13} and {7, 13}.
Therefore, the answer is 2.
Naive Approach: The simplest approach is to generate all possible subsequence of the given array and print the length of the longest subsequence consisting of prime numbers in increasing order.
Time Complexity: O(2N)
Auxiliary Space: O(N)
Efficient Approach: The idea is to use the Dynamic Programming approach to optimize the above approach. This problem is a basic variation of the Longest Increasing Subsequence (LIS) problem. Below are the steps:
- Initialize an auxiliary array dp[] of size N such that dp[i] will store the length of LIS of prime numbers ending at index i.
- Below is the recurrence relation for finding the longest increasing Prime Numbers:
If arr[i] is prime then
dp[i] = 1 + max(dp[j], for j belongs (0, i – 1)), where 0 < j < i and arr[j] < arr[i];
dp[i] = 1, if no such j exists
else if arr[i] is non-prime then
dp[i] = 0
- Using Sieve of Eratosthenes store all the prime numbers to till 105.
- Iterate a two nested loop over the given array and update the array dp[] according to the above recurrence relation.
- After all the above steps, the maximum element in the array dp[] is the length of the longest increasing subsequence of Prime Numbers in the given array.
Below is the implementation of the above approach:
C++
// C++ program for the above approach #include <bits/stdc++.h> using namespace std; #define N 100005 // Function to find the prime numbers // till 10^5 using Sieve of Eratosthenes void SieveOfEratosthenes( bool prime[], int p_size) { // False here indicates // that it is not prime prime[0] = false ; prime[1] = false ; for ( int p = 2; p * p <= p_size; p++) { // If prime[p] is not changed, // then it is a prime if (prime[p]) { // Update all multiples of p, // set them to non-prime for ( int i = p * 2; i <= p_size; i += p) prime[i] = false ; } } } // Function which computes the length // of the LIS of Prime Numbers int LISPrime( int arr[], int n) { // Create an array of size n int lisp[n]; // Create boolean array to // mark prime numbers bool prime[N + 1]; // Initialize all values to true memset (prime, true , sizeof (prime)); // Precompute N primes SieveOfEratosthenes(prime, N); lisp[0] = prime[arr[0]] ? 1 : 0; // Compute optimized LIS having // prime numbers in bottom up manner for ( int i = 1; i < n; i++) { if (!prime[arr[i]]) { lisp[i] = 0; continue ; } lisp[i] = 1; for ( int j = 0; j < i; j++) { // Check for LIS and prime if (prime[arr[j]] && arr[i] > arr[j] && lisp[i] < lisp[j] + 1) { lisp[i] = lisp[j] + 1; } } } // Return maximum value in lis[] return *max_element(lisp, lisp + n); } // Driver Code int main() { // Given array int arr[] = { 1, 2, 5, 3, 2, 5, 1, 7 }; // Size of array int M = sizeof (arr) / sizeof (arr[0]); // Function Call cout << LISPrime(arr, M); return 0; } |
Java
// Java program for the above approach import java.util.*; class GFG{ static final int N = 100005 ; // Function to find the prime numbers // till 10^5 using Sieve of Eratosthenes static void SieveOfEratosthenes( boolean prime[], int p_size) { // False here indicates // that it is not prime prime[ 0 ] = false ; prime[ 1 ] = false ; for ( int p = 2 ; p * p <= p_size; p++) { // If prime[p] is not changed, // then it is a prime if (prime[p]) { // Update all multiples of p, // set them to non-prime for ( int i = p * 2 ; i <= p_size; i += p) prime[i] = false ; } } } // Function which computes the length // of the LIS of Prime Numbers static int LISPrime( int arr[], int n) { // Create an array of size n int []lisp = new int [n]; // Create boolean array to // mark prime numbers boolean []prime = new boolean [N + 1 ]; // Initialize all values to true for ( int i = 0 ; i < prime.length; i++) prime[i] = true ; // Precompute N primes SieveOfEratosthenes(prime, N); lisp[ 0 ] = prime[arr[ 0 ]] ? 1 : 0 ; // Compute optimized LIS having // prime numbers in bottom up manner for ( int i = 1 ; i < n; i++) { if (!prime[arr[i]]) { lisp[i] = 0 ; continue ; } lisp[i] = 1 ; for ( int j = 0 ; j < i; j++) { // Check for LIS and prime if (prime[arr[j]] && arr[i] > arr[j] && lisp[i] < lisp[j] + 1 ) { lisp[i] = lisp[j] + 1 ; } } } // Return maximum value in lis[] return Arrays.stream(lisp).max().getAsInt(); } // Driver Code public static void main(String[] args) { // Given array int arr[] = { 1 , 2 , 5 , 3 , 2 , 5 , 1 , 7 }; // Size of array int M = arr.length; // Function call System.out.print(LISPrime(arr, M)); } } // This code is contributed by Amit Katiyar |
Python3
# Python3 program for # the above approach N = 100005 # Function to find the prime numbers # till 10^5 using Sieve of Eratosthenes def SieveOfEratosthenes(prime, p_size): # False here indicates # that it is not prime prime[ 0 ] = False prime[ 1 ] = False p = 2 while p * p < = p_size: # If prime[p] is not changed, # then it is a prime if (prime[p]): # Update all multiples of p, # set them to non-prime for i in range (p * 2 , p_size + 1 , p): prime[i] = False p + = 1 # Function which computes the length # of the LIS of Prime Numbers def LISPrime(arr, n): # Create an array of size n lisp = [ 0 ] * n # Create boolean array to # mark prime numbers prime = [ True ] * (N + 1 ) # Precompute N primes SieveOfEratosthenes(prime, N) if prime[arr[ 0 ]]: lisp[ 0 ] = 1 else : lisp[ 0 ] = 0 # Compute optimized LIS having # prime numbers in bottom up manner for i in range ( 1 , n): if ( not prime[arr[i]]): lisp[i] = 0 continue lisp[i] = 1 for j in range (i): # check for LIS and prime if (prime[arr[j]] and arr[i] > arr[j] and lisp[i] < lisp[j] + 1 ): lisp[i] = lisp[j] + 1 # Return maximum value in lis[] return max (lisp) # Driver Code if __name__ = = "__main__" : # Given array arr = [ 1 , 2 , 5 , 3 , 2 , 5 , 1 , 7 ] # Size of array M = len (arr) # Function Call print (LISPrime(arr, M)) # This code is contributed by Chitranayal |
C#
// C# program for the above approach using System; using System.Linq; class GFG{ static readonly int N = 100005; // Function to find the prime numbers // till 10^5 using Sieve of Eratosthenes static void SieveOfEratosthenes( bool []prime, int p_size) { // False here indicates // that it is not prime prime[0] = false ; prime[1] = false ; for ( int p = 2; p * p <= p_size; p++) { // If prime[p] is not changed, // then it is a prime if (prime[p]) { // Update all multiples of p, // set them to non-prime for ( int i = p * 2; i <= p_size; i += p) prime[i] = false ; } } } // Function which computes the length // of the LIS of Prime Numbers static int LISPrime( int []arr, int n) { // Create an array of size n int []lisp = new int [n]; // Create bool array to // mark prime numbers bool []prime = new bool [N + 1]; // Initialize all values to true for ( int i = 0; i < prime.Length; i++) prime[i] = true ; // Precompute N primes SieveOfEratosthenes(prime, N); lisp[0] = prime[arr[0]] ? 1 : 0; // Compute optimized LIS having // prime numbers in bottom up manner for ( int i = 1; i < n; i++) { if (!prime[arr[i]]) { lisp[i] = 0; continue ; } lisp[i] = 1; for ( int j = 0; j < i; j++) { // Check for LIS and prime if (prime[arr[j]] && arr[i] > arr[j] && lisp[i] < lisp[j] + 1) { lisp[i] = lisp[j] + 1; } } } // Return maximum value in lis[] return lisp.Max(); } // Driver Code public static void Main(String[] args) { // Given array int []arr = { 1, 2, 5, 3, 2, 5, 1, 7 }; // Size of array int M = arr.Length; // Function call Console.Write(LISPrime(arr, M)); } } // This code is contributed by Amit Katiyar |
Javascript
<script> // Javascript program for the above approach let N = 100005 // Function to find the prime numbers // till 10^5 using Sieve of Eratosthenes function SieveOfEratosthenes(prime, p_size) { // False here indicates // that it is not prime prime[0] = false ; prime[1] = false ; for (let p = 2; p * p <= p_size; p++) { // If prime[p] is not changed, // then it is a prime if (prime[p]) { // Update all multiples of p, // set them to non-prime for (let i = p * 2; i <= p_size; i += p) prime[i] = false ; } } } // Function which computes the length // of the LIS of Prime Numbers function LISPrime(arr, n) { // Create an array of size n let lisp = new Array(n); // Create boolean array to // mark prime numbers let prime = new Array(N + 1); // Initialize all values to true prime.fill( true ); // Precompute N primes SieveOfEratosthenes(prime, N); lisp[0] = prime[arr[0]] ? 1 : 0; // Compute optimized LIS having // prime numbers in bottom up manner for (let i = 1; i < n; i++) { if (!prime[arr[i]]) { lisp[i] = 0; continue ; } lisp[i] = 1; for (let j = 0; j < i; j++) { // Check for LIS and prime if (prime[arr[j]] && arr[i] > arr[j] && lisp[i] < lisp[j] + 1) { lisp[i] = lisp[j] + 1; } } } // Return maximum value in lis[] return lisp.sort((a, b) => b - a)[0]; } // Driver Code // Given array let arr = [ 1, 2, 5, 3, 2, 5, 1, 7 ]; // Size of array let M = arr.length; // Function Call document.write(LISPrime(arr, M)); // This code is contributed by gfgking </script> |
4
Time Complexity: O(N2)
Auxiliary Space: O(N)
Ready to dive in? Explore our Free Demo Content and join our DSA course, trusted by over 100,000 neveropen!