Monday, November 25, 2024
Google search engine
HomeData Modelling & AILargest trapezoid that can be inscribed in a semicircle

Largest trapezoid that can be inscribed in a semicircle

Given a semicircle of radius r, the task is to find the largest trapezoid that can be inscribed in the semicircle, with base lying on the diameter.
Examples: 
 

Input: r = 5
Output: 32.476

Input: r = 8
Output: 83.1384

 

 

Approach: Let r be the radius of the semicircle, x be the lower edge of the trapezoid, and y the upper edge, & h be the height of the trapezoid. 
Now from the figure,
 

r^2 = h^2 + (y/2)^2
or, 4r^2 = 4h^2 + y^2
y^2 = 4r^2 – 4h^2
y = 2?(r^2 – h^2)
We know, Area of Trapezoid, A = (x + y)*h/2
So, A = hr + h?(r^2 – h^2)
taking the derivative of this area function with respect to h, (noting that r is a constant since we are given the semicircle of radius r to start with)
dA/dh = r + ?(r^2 – h^2) – h^2/?(r^2 – h^2)
To find the critical points we set the derivative equal to zero and solve for h, we get
h = ?3/2 * r
So, x = 2 * r & y = r 
So, A = (3 * ?3 * r^2)/4 
 

Below is the implementation of above approach
 

C++




// C++ Program to find the biggest trapezoid
// which can be inscribed within the semicircle
#include <bits/stdc++.h>
using namespace std;
 
// Function to find the area
// of the biggest trapezoid
float trapezoidarea(float r)
{
 
    // the radius cannot be negative
    if (r < 0)
        return -1;
 
    // area of the trapezoid
    float a = (3 * sqrt(3) * pow(r, 2)) / 4;
 
    return a;
}
 
// Driver code
int main()
{
    float r = 5;
    cout << trapezoidarea(r) << endl;
    return 0;
}


Java




// Java Program to find the biggest trapezoid
// which can be inscribed within the semicircle
 
import java.util.*;
import java.lang.*;
import java.io.*;
 
class GFG{
// Function to find the area
// of the biggest trapezoid
static float trapezoidarea(float r)
{
 
    // the radius cannot be negative
    if (r < 0)
        return -1;
 
    // area of the trapezoid
    float a = (3 * (float)Math.sqrt(3)
            * (float)Math.pow(r, 2)) / 4;
 
    return a;
}
 
// Driver code
public static void main(String args[])
{
    float r = 5;
    System.out.printf("%.3f",trapezoidarea(r));
}
}


Python 3




# Python 3 Program to find the biggest trapezoid
# which can be inscribed within the semicircle
 
# from math import everything
from math import *
 
# Function to find the area
# of the biggest trapezoid
def trapezoidarea(r) :
 
    # the radius cannot be negative
    if r < 0 :
        return -1
 
    # area of the trapezoid
    a = (3 * sqrt(3) * pow(r,2)) / 4
 
    return a
 
 
# Driver code    
if __name__ == "__main__" :
 
    r = 5
 
    print(round(trapezoidarea(r),3))
 
 
# This code is contributed by ANKITRAI1


C#




// C# Program to find the biggest
// trapezoid which can be inscribed
// within the semicircle
using System;
 
class GFG
{
// Function to find the area
// of the biggest trapezoid
static float trapezoidarea(float r)
{
 
    // the radius cannot be negative
    if (r < 0)
        return -1;
 
    // area of the trapezoid
    float a = (3 * (float)Math.Sqrt(3) *
                   (float)Math.Pow(r, 2)) / 4;
 
    return a;
}
 
// Driver code
public static void Main()
{
    float r = 5;
    Console.WriteLine("" + trapezoidarea(r));
}
}
 
// This code is contributed
// by inder_verma


PHP




<?php
// PHP Program to find the biggest
// trapezoid which can be inscribed
// within the semicircle
 
// Function to find the area
// of the biggest trapezoid
function trapezoidarea($r)
{
 
    // the radius cannot be negative
    if ($r < 0)
        return -1;
 
    // area of the trapezoid
    $a = (3 * sqrt(3) * pow($r, 2)) / 4;
 
    return $a;
}
 
// Driver code
$r = 5;
echo trapezoidarea($r)."\n";
 
// This code is contributed
// by ChitraNayal
?>


Javascript




<script>
 
// javascript Program to find the biggest trapezoid
// which can be inscribed within the semicircle
 
// Function to find the area
// of the biggest trapezoid
function trapezoidarea(r)
{
 
    // the radius cannot be negative
    if (r < 0)
        return -1;
 
    // area of the trapezoid
    var a = (3 * Math.sqrt(3)
            * Math.pow(r, 2)) / 4;
 
    return a;
}
 
// Driver code
 
var r = 5;
document.write(trapezoidarea(r).toFixed(3));
 
// This code contributed by Princi Singh
 
</script>


Output: 

32.476

 

Time complexity: O(1)

Auxiliary space: O(1)

Feeling lost in the world of random DSA topics, wasting time without progress? It’s time for a change! Join our DSA course, where we’ll guide you on an exciting journey to master DSA efficiently and on schedule.
Ready to dive in? Explore our Free Demo Content and join our DSA course, trusted by over 100,000 neveropen!

RELATED ARTICLES

Most Popular

Recent Comments