Saturday, November 16, 2024
Google search engine
HomeData Modelling & AIHammered distance between N points in a 2-D plane

Hammered distance between N points in a 2-D plane

Given n number of point in 2-d plane followed by Xi, Yi describing n points. The task is to calculate the hammered distance of n points. 
Note: Hammered distance is the sum of the square of the shortest distance between every pair of the point.

Examples: 

Input: n = 3
0 1
0 0
1 0
Output: 4

Input: n = 4
1 0
2 0
3 0
4 0
Output: 20

Basic Approach:As we have to find out sum of square of shortest distance among all the pairs.So, we can take every possible pair and calculate the sum of square of distance.  

// Pseudo code to find hammered-distance using above approach.
//this will store hammered distance
Distance=0
for(int i=0;i<n;i++)
{
    for(int j=i+1;j<n;j++)
    {
         //shortest distance between point i and j.
         Distance+=(x[i]-x[j])^2+(y[i]-y[j])^2
     }
}

Its time complexity will be O(n^2).
Efficient Approach: This problem can be solved in time complexity of O(N).  

    \begin{document} $$Sum=\sum_{i=1}^{n} \sum_{j=1}^{i-1} \left(X_j-X_i \right)^2+\left(Y_j-Y_i \right)^2$$ We can solve separtely for x and y coordinates. For X: $$Sum_x=\sum_{i=1}^{n} \sum_{j=1}^{i-1} \left(X_j-X_i \right)^2$$ $$Sum_x= \sum_{i=1}^{n} \sum_{j=1}^{i-1} \left(X_j^2+X_i^2 -2 \cdot X_i \cdot X_j \right)$$ Now expand the summation part, We can write this equation as- $$Sum_x=\sum_{i=1}^{n} \left( (i-1)*X_i^2+\sum_{j=1}^{i-1}X_j^2-2 \cdot X_i\cdot \sum_{j=1}^{i-1} X_j \right)$$ $\sum_{j=1}^{i-1}X_j$ This is commulative sum of square of points upto i-1.So, this can be calculated in linear time. Similarly, This can also be calculated in linear time. $2 \cdot X_i\cdot \sum_{j=1}^{i-1} X_j$ \end{document}

 

Below is the implementation of above approach: 

C++




// C++ implementation of above approach
#include <bits/stdc++.h>
#define ll long long int
using namespace std;
 
// Function calculate cumulative sum
// of x, y, x^2, y^2 coordinates.
void cumm(vector<ll>& x, vector<ll>& y,
        vector<ll>& cummx, vector<ll>& cummy,
        vector<ll>& cummx2, vector<ll>& cummy2, ll n)
{
    for (int i = 1; i <= n; i++) {
        cummx[i] = cummx[i - 1] + x[i];
        cummy[i] = cummy[i - 1] + y[i];
        cummx2[i] = cummx2[i - 1] + x[i] * x[i];
        cummy2[i] = cummy2[i - 1] + y[i] * y[i];
    }
}
 
// Function ot calculate the hammered distance
int calHammeredDistance(int n, vector<ll>& x, vector<ll>& y)
{
    // cummx contains cumulative sum of x
    // cummy contains cumulative sum of y
    vector<ll> cummx(n + 1, 0), cummy(n + 1, 0);
 
    // cummx2 contains cumulative sum of x^2
    // cummy2 contains cumulative sum of y^2
    vector<ll> cummx2(n + 1, 0), cummy2(n + 1, 0);
 
    // calculate cumulative of x
    //, y, x^2, y^2, because these terms
    // required in formula to reduce complexity.
 
    // this function calculate all required terms.
    cumm(x, y, cummx, cummy, cummx2, cummy2, n);
 
    // hdx calculate hammer distance for x coordinate
    // hdy calculate hammer distance for y coordinate
    ll hdx = 0, hdy = 0;
 
    for (int i = 1; i <= n; i++) {
 
        // came from formula describe in explanation
        hdx += (i - 1) * x[i] * x[i] + cummx2[i - 1]
            - 2 * x[i] * cummx[i - 1];
 
        // came from formula describe in explanation
        hdy += (i - 1) * y[i] * y[i] + cummy2[i - 1]
            - 2 * y[i] * cummy[i - 1];
    }
 
    // total is the sum of both x and y.
    ll total = hdx + hdy;
    return total;
}
 
// Driver code
int main()
{
    // number of points
    int n = 3;
 
    // x contains the x coordinates
    // y contains the y coordinates
    //and converting the size to n+1
    vector<ll> x = {0, 0, 1, 0};
    vector<ll> y = {1, 0, 0, 0};
 
    cout << calHammeredDistance(n, x, y);
 
    return 0;
}


Java




// Java implementation of above approach
 
 
class GFG{
  
// Function calculate cumulative sum
// of x, y, x^2, y^2 coordinates.
static void cumm(int [] x, int [] y,
        int [] cummx, int [] cummy,
        int [] cummx2, int [] cummy2, int n)
{
    for (int i = 1; i <= n; i++) {
        cummx[i] = cummx[i - 1] + x[i];
        cummy[i] = cummy[i - 1] + y[i];
        cummx2[i] = cummx2[i - 1] + x[i] * x[i];
        cummy2[i] = cummy2[i - 1] + y[i] * y[i];
    }
}
  
// Function ot calculate the hammered distance
static int calHammeredDistance(int n, int [] x, int [] y)
{
    // cummx contains cumulative sum of x
    // cummy contains cumulative sum of y
    int []cummx = new int[n + 1];
    int []cummy = new int[n + 1];
  
    // cummx2 contains cumulative sum of x^2
    // cummy2 contains cumulative sum of y^2
    int []cummx2 = new int[n + 1];
    int []cummy2 = new int[n + 1];
  
    // calculate cumulative of x
    //, y, x^2, y^2, because these terms
    // required in formula to reduce complexity.
  
    // this function calculate all required terms.
    cumm(x, y, cummx, cummy, cummx2, cummy2, n);
  
    // hdx calculate hammer distance for x coordinate
    // hdy calculate hammer distance for y coordinate
    int hdx = 0, hdy = 0;
  
    for (int i = 1; i <= n; i++) {
  
        // came from formula describe in explanation
        hdx += (i - 1) * x[i] * x[i] + cummx2[i - 1]
               - 2 * x[i] * cummx[i - 1];
  
        // came from formula describe in explanation
        hdy += (i - 1) * y[i] * y[i] + cummy2[i - 1]
               - 2 * y[i] * cummy[i - 1];
    }
  
    // total is the sum of both x and y.
    int total = hdx + hdy;
    return total;
}
  
// Driver code
public static void main(String[] args)
{
    // number of points
    int n = 3;
  
    // x contains the x coordinates
    // y contains the y coordinates
    int []x = new int[n + 1];
    int []y = new int[n + 1];
    x[2] = 1;
    y[0] = 1;
  
    System.out.print(calHammeredDistance(n, x, y));
  
}
}
 
// This code contributed by Rajput-Ji


Python3




# Python3 implementation of the
# above approach
 
# Function calculate cumulative sum
# of x, y, x^2, y^2 coordinates.
def cumm(x, y, cummx, cummy,
               cummx2, cummy2, n):
 
    for i in range(1, n+1):
        cummx[i] = cummx[i - 1] + x[i]
        cummy[i] = cummy[i - 1] + y[i]
        cummx2[i] = cummx2[i - 1] + x[i] * x[i]
        cummy2[i] = cummy2[i - 1] + y[i] * y[i]
 
# Function ot calculate the
# hammered distance
def calHammeredDistance(n, x, y):
 
    # cummx contains cumulative sum of x
    # cummy contains cumulative sum of y
    cummx = [0] * (n + 1)
    cummy = [0] * (n + 1)
 
    # cummx2 contains cumulative sum of x^2
    # cummy2 contains cumulative sum of y^2
    cummx2 = [0] * (n + 1)
    cummy2 = [0] * (n + 1)
 
    # calculate cumulative of x , y, x^2, y^2,
    # because these terms are required in the
    # formula to reduce complexity.
 
    # This function calculate all required terms.
    cumm(x, y, cummx, cummy, cummx2, cummy2, n)
 
    # hdx calculate hammer distance for x coordinate
    # hdy calculate hammer distance for y coordinate
    hdx, hdy = 0, 0
 
    for i in range(1, n + 1):
 
        # came from formula describe in explanation
        hdx += ((i - 1) * x[i] * x[i] + cummx2[i - 1] -
                             2 * x[i] * cummx[i - 1])
 
        # came from formula describe in explanation
        hdy += ((i - 1) * y[i] * y[i] + cummy2[i - 1] -
                             2 * y[i] * cummy[i - 1])
     
    # total is the sum of both x and y.
    total = hdx + hdy
    return total
 
# Driver Code
if __name__ == "__main__":
 
    # number of points
    n = 3
 
    # x contains the x coordinates
    # y contains the y coordinates
    x = [0, 0, 1, 0]
    y = [1, 0, 0, 0]
 
    print(calHammeredDistance(n, x, y))
 
# This code is contributed by Rituraj Jain


C#




// C# implementation of above approach
using System;
 
class GFG{
   
// Function calculate cumulative sum
// of x, y, x^2, y^2 coordinates.
static void cumm(int [] x, int [] y,
        int [] cummx, int [] cummy,
        int [] cummx2, int [] cummy2, int n)
{
    for (int i = 1; i <= n; i++) {
        cummx[i] = cummx[i - 1] + x[i];
        cummy[i] = cummy[i - 1] + y[i];
        cummx2[i] = cummx2[i - 1] + x[i] * x[i];
        cummy2[i] = cummy2[i - 1] + y[i] * y[i];
    }
}
   
// Function ot calculate the hammered distance
static int calHammeredDistance(int n, int [] x, int [] y)
{
    // cummx contains cumulative sum of x
    // cummy contains cumulative sum of y
    int []cummx = new int[n + 1];
    int []cummy = new int[n + 1];
   
    // cummx2 contains cumulative sum of x^2
    // cummy2 contains cumulative sum of y^2
    int []cummx2 = new int[n + 1];
    int []cummy2 = new int[n + 1];
   
    // calculate cumulative of x
    //, y, x^2, y^2, because these terms
    // required in formula to reduce complexity.
   
    // this function calculate all required terms.
    cumm(x, y, cummx, cummy, cummx2, cummy2, n);
   
    // hdx calculate hammer distance for x coordinate
    // hdy calculate hammer distance for y coordinate
    int hdx = 0, hdy = 0;
   
    for (int i = 1; i <= n; i++) {
   
        // came from formula describe in explanation
        hdx += (i - 1) * x[i] * x[i] + cummx2[i - 1]
               - 2 * x[i] * cummx[i - 1];
   
        // came from formula describe in explanation
        hdy += (i - 1) * y[i] * y[i] + cummy2[i - 1]
               - 2 * y[i] * cummy[i - 1];
    }
   
    // total is the sum of both x and y.
    int total = hdx + hdy;
    return total;
}
   
// Driver code
public static void Main(String[] args)
{
    // number of points
    int n = 3;
   
    // x contains the x coordinates
    // y contains the y coordinates
    int []x = new int[n + 1];
    int []y = new int[n + 1];
    x[2] = 1;
    y[0] = 1;
   
    Console.Write(calHammeredDistance(n, x, y)); 
}
}
 
// This code is contributed by PrinciRaj1992


Javascript




<script>
      // JavaScript implementation of above approach
      // Function calculate cumulative sum
      // of x, y, x^2, y^2 coordinates.
      function cumm(x, y, cummx, cummy, cummx2, cummy2, n) {
        for (var i = 1; i <= n; i++) {
          cummx[i] = cummx[i - 1] + x[i];
          cummy[i] = cummy[i - 1] + y[i];
          cummx2[i] = cummx2[i - 1] + x[i] * x[i];
          cummy2[i] = cummy2[i - 1] + y[i] * y[i];
        }
      }
 
      // Function ot calculate the hammered distance
      function calHammeredDistance(n, x, y) {
        // cummx contains cumulative sum of x
        // cummy contains cumulative sum of y
        var cummy = new Array(n + 1).fill(0);
        var cummx = new Array(n + 1).fill(0);
 
        // cummx2 contains cumulative sum of x^2
        // cummy2 contains cumulative sum of y^2
        var cummx2 = new Array(n + 1).fill(0);
        var cummy2 = new Array(n + 1).fill(0);
 
        // calculate cumulative of x
        //, y, x^2, y^2, because these terms
        // required in formula to reduce complexity.
 
        // this function calculate all required terms.
        cumm(x, y, cummx, cummy, cummx2, cummy2, n);
 
        // hdx calculate hammer distance for x coordinate
        // hdy calculate hammer distance for y coordinate
        var hdx = 0,
          hdy = 0;
 
        for (var i = 1; i <= n; i++) {
          // came from formula describe in explanation
          hdx +=
            (i - 1) * x[i] * x[i] + cummx2[i - 1] - 2 * x[i] * cummx[i - 1];
 
          // came from formula describe in explanation
          hdy +=
            (i - 1) * y[i] * y[i] + cummy2[i - 1] - 2 * y[i] * cummy[i - 1];
        }
 
        // total is the sum of both x and y.
        var total = hdx + hdy;
        return total;
      }
 
      // Driver code
      // number of points
      var n = 3;
 
      // x contains the x coordinates
      // y contains the y coordinates
      var x = new Array(n + 1).fill(0);
      var y = new Array(n + 1).fill(0);
      x[2] = 1;
      y[0] = 1;
 
      document.write(calHammeredDistance(n, x, y));
    </script>


Output

2

Time Complexity: O(n)
Auxiliary Space: O(n)

Feeling lost in the world of random DSA topics, wasting time without progress? It’s time for a change! Join our DSA course, where we’ll guide you on an exciting journey to master DSA efficiently and on schedule.
Ready to dive in? Explore our Free Demo Content and join our DSA course, trusted by over 100,000 neveropen!

RELATED ARTICLES

Most Popular

Recent Comments