Given two integers N and M, the task is to construct a binary string with the following conditions :
- The Binary String consists of N 0’s and M 1’s
- The Binary String has at most K consecutive 1’s.
- The Binary String does not contain any adjacent 0’s.
If it is not possible to construct such a binary string, then print -1.
Examples:
Input: N = 5, M = 9, K = 2
Output: 01101101101101
Explanation:
The string “01101101101101” satisfies the following conditions:
- No consecutive 0’s are present.
- No more than K(= 2) consecutive 1’s are present.
Input: N = 4, M = 18, K = 4
Output: 1101111011110111101111
Approach:
To construct a binary string satisfying the given properties, observe the following:
- For no two ‘0‘s to be consecutive, there should be at least a ‘1‘ placed between them.
- Therefore, for N number of ‘0‘s, there should be at least N-1 ‘1‘s present for a string of required type to be generated.
- Since no more than K consecutive ‘1‘s can be placed together, for N 0’s, there can be a maximum (N+1) * K ‘1‘s possible.
- Therefore, the number of ‘1‘s should lie within the range:
N – 1 ? M ? (N + 1) * K
- If the given values N and M do not satisfy the above condition, then print -1.
- Otherwise, follow the steps below to solve the problem:
- Append ‘0‘s to the final string.
- Insert ‘1‘ in between each pair of ‘0′s. Subtract N – 1 from M, as N – 1 ‘1‘s have already been placed.
- For the remaining ‘1‘s, place min(K – 1, M) ‘1‘s alongside each already placed ‘1‘s, to ensure that no more than K ‘1’s are placed together.
- For any remaining ‘1‘s, append them to the beginning and end of the final string.
- Finally, print the string generated.
Below is the implementation of the above approach:
C++
// C++ Program to implement // the above approach #include <bits/stdc++.h> using namespace std; // Function to construct the binary string string ConstructBinaryString( int N, int M, int K) { // Conditions when string construction // is not possible if (M < (N - 1) || M > K * (N + 1)) return "-1" ; string ans = "" ; // Stores maximum 1's that // can be placed in between int l = min(K, M / (N - 1)); int temp = N; while (temp--) { // Place 0's ans += '0' ; if (temp == 0) break ; // Place 1's in between for ( int i = 0; i < l; i++) { ans += '1' ; } } // Count remaining M's M -= (N - 1) * l; if (M == 0) return ans; l = min(M, K); // Place 1's at the end for ( int i = 0; i < l; i++) ans += '1' ; M -= l; // Place 1's at the beginning while (M > 0) { ans = '1' + ans; M--; } // Return the final string return ans; } // Driver Code int main() { int N = 5, M = 9, K = 2; cout << ConstructBinaryString(N, M, K); } |
Java
// Java implementation of // the above approach import java.io.*; class GFG{ // Function to construct the binary string static String ConstructBinaryString( int N, int M, int K) { // Conditions when string construction // is not possible if (M < (N - 1 ) || M > K * (N + 1 )) return "-1" ; String ans = "" ; // Stores maximum 1's that // can be placed in between int l = Math.min(K, M / (N - 1 )); int temp = N; while (temp != 0 ) { temp--; // Place 0's ans += '0' ; if (temp == 0 ) break ; // Place 1's in between for ( int i = 0 ; i < l; i++) { ans += '1' ; } } // Count remaining M's M -= (N - 1 ) * l; if (M == 0 ) return ans; l = Math.min(M, K); // Place 1's at the end for ( int i = 0 ; i < l; i++) ans += '1' ; M -= l; // Place 1's at the beginning while (M > 0 ) { ans = '1' + ans; M--; } // Return the final string return ans; } // Driver code public static void main(String[] args) { int N = 5 , M = 9 , K = 2 ; System.out.println(ConstructBinaryString(N, M, K)); } } // This code is contributed by rutvik_56 |
Python3
# Python3 implementation of # the above approach # Function to construct the binary string def ConstructBinaryString(N, M, K): # Conditions when string construction # is not possible if (M < (N - 1 ) or M > K * (N + 1 )): return '-1' ans = "" # Stores maximum 1's that # can be placed in between l = min (K, M / / (N - 1 )) temp = N while (temp): temp - = 1 # Place 0's ans + = '0' if (temp = = 0 ): break # Place 1's in between for i in range (l): ans + = '1' # Count remaining M's M - = (N - 1 ) * l if (M = = 0 ): return ans l = min (M, K) # Place 1's at the end for i in range (l): ans + = '1' M - = l # Place 1's at the beginning while (M > 0 ): ans = '1' + ans M - = 1 # Return the final string return ans # Driver Code if __name__ = = '__main__' : N = 5 M = 9 K = 2 print (ConstructBinaryString(N, M , K)) # This code is contributed by Shivam Singh |
C#
// C# implementation of // the above approach using System; class GFG{ // Function to construct the binary string static String ConstructBinaryString( int N, int M, int K) { // Conditions when string construction // is not possible if (M < (N - 1) || M > K * (N + 1)) return "-1" ; string ans = "" ; // Stores maximum 1's that // can be placed in between int l = Math.Min(K, M / (N - 1)); int temp = N; while (temp != 0) { temp--; // Place 0's ans += '0' ; if (temp == 0) break ; // Place 1's in between for ( int i = 0; i < l; i++) { ans += '1' ; } } // Count remaining M's M -= (N - 1) * l; if (M == 0) return ans; l = Math.Min(M, K); // Place 1's at the end for ( int i = 0; i < l; i++) ans += '1' ; M -= l; // Place 1's at the beginning while (M > 0) { ans = '1' + ans; M--; } // Return the final string return ans; } // Driver code public static void Main( string [] args) { int N = 5, M = 9, K = 2; Console.Write(ConstructBinaryString(N, M, K)); } } // This code is contributed by Ritik Bansal |
Javascript
<script> // JavaScript program for the above approach // Function to construct the binary string function ConstructBinaryString(N, M, K) { // Conditions when string construction // is not possible if (M < (N - 1) || M > K * (N + 1)) return "-1" ; let ans = "" ; // Stores maximum 1's that // can be placed in between let l = Math.min(K, M / (N - 1)); let temp = N; while (temp != 0) { temp--; // Place 0's ans += '0' ; if (temp == 0) break ; // Place 1's in between for (let i = 0; i < l; i++) { ans += '1 '; } } // Count remaining M' s M -= (N - 1) * l; if (M == 0) return ans; l = Math.min(M, K); // Place 1's at the end for (let i = 0; i < l; i++) ans += '1 '; M -= l; // Place 1' s at the beginning while (M > 0) { ans = '1' + ans; M--; } // Return the final string return ans; } // Driver Code let N = 5, M = 9, K = 2; document.write(ConstructBinaryString(N, M, K)); </script> |
01101101101101
Time Complexity: O(N+M)
Auxiliary Space: O(N+M)
Ready to dive in? Explore our Free Demo Content and join our DSA course, trusted by over 100,000 neveropen!