Monday, November 18, 2024
Google search engine
HomeData Modelling & AIFind two numbers with given sum and maximum possible LCM

Find two numbers with given sum and maximum possible LCM

Given an integer X, the task is to find two integers A and B such that sum of these two numbers is X and the LCM of A and B is maximum.

Examples:

Input: X = 15
Output: 7 8
Explanation: 
7 + 8 = 15 and LCM(7, 8) = 56 is the maximum possible. 

Input: X = 30 
Output: 13 17
Explanation:
13 + 17 = 30 and LCM(13, 17) = 221 is the maximum possible.

 

Naive Approach: The simplest approach is to use Two Pointers to find the pair of integers A and B with a given sum X and maximum possible LCM. Below are the steps:

  • Initialize A and B as 1 and X1 respectively.
  • Run a loop, while, A is less than and equal to B.
  • At each iteration calculate the LCM of A and B, then increment A by 1 and decrement B by 1.
  • Print the A and B corresponding to the maximum LCM.

Time Complexity: O(N)
Auxiliary Space: O(1)

Efficient Approach: To optimize the above naive approach the idea is to use some mathematical observations. The LCM of two co-prime integers is equal to the product of the two integers. Thus, the problem can be simplified to finding two co-prime integers A and B such that A+B = X and A×B is maximum. Below are the steps:

  • If X is odd, then A = floor(X/2) and B = floor(X/2) + 1.
  • Otherwise, if X is even, then
    • If floor(X/2) is even, then A = floor(X/2) – 1 and B = floor(X/2) + 1.
    • Otherwise, if floor(X/2) is odd, then A = floor(X/2) – 2 and B = floor(X/2) + 2.
       

Below is the implementation of the above approach:

C++




// C++ program of the above approach
#include <bits/stdc++.h>
using namespace std;
 
// Function that print two numbers with
// the sum X and maximum possible LCM
void maxLCMWithGivenSum(int X)
{
    // variables to store the result
    int A, B;
 
    // If X is odd
    if (X & 1) {
        A = X / 2;
        B = X / 2 + 1;
    }
 
    // If X is even
    else {
 
        // If floor(X/2) is even
        if ((X / 2) % 2 == 0) {
            A = X / 2 - 1;
            B = X / 2 + 1;
        }
 
        // If floor(X/2) is odd
        else {
            A = X / 2 - 2;
            B = X / 2 + 2;
        }
    }
 
    // Print the result
    cout << A << " " << B << endl;
}
 
// Driver Code
int main()
{
    // Given Number
    int X = 30;
 
    // Function call
    maxLCMWithGivenSum(X);
    return 0;
}


Java




// Java program of the above approach
import java.util.*;
 
class GFG{
 
// Function that print two numbers with
// the sum X and maximum possible LCM
static void maxLCMWithGivenSum(int X)
{
     
    // Variables to store the result
    int A, B;
 
    // If X is odd
    if ((X & 1) == 1)
    {
        A = X / 2;
        B = X / 2 + 1;
    }
 
    // If X is even
    else
    {
         
        // If floor(X/2) is even
        if ((X / 2) % 2 == 0)
        {
            A = X / 2 - 1;
            B = X / 2 + 1;
        }
 
        // If floor(X/2) is odd
        else
        {
            A = X / 2 - 2;
            B = X / 2 + 2;
        }
    }
     
    // Print the result
    System.out.println(A + " " + B);
}
 
// Driver code
public static void main(String[] args)
{
     
    // Given number
    int X = 30;
 
    // Function call
    maxLCMWithGivenSum(X);
}
}
 
// This code is contributed by offbeat


Python3




# Python3 program for the above approach
 
# Function that print two numbers with
# the sum X and maximum possible LCM
def maxLCMWithGivenSum(X):
     
    # If X is odd
    if X % 2 != 0:
        A = X / 2
        B = X / 2 + 1
         
    # If X is even
    else:
         
        # If floor(X/2) is even
        if (X / 2) % 2 == 0:
            A = X / 2 - 1
            B = X / 2 + 1
             
        # If floor(X/2) is odd
        else:
            A = X / 2 - 2
            B = X / 2 + 2
             
    # Print the result
    print(int(A), int(B), end = " ")
 
# Driver Code
if __name__ == '__main__':
     
    # Given Number
    X = 30
     
    # Function call
    maxLCMWithGivenSum(X)
 
# This code is contributed by virusbuddah_


C#




// C# program of the above approach
using System;
class GFG{
 
// Function that print two numbers with
// the sum X and maximum possible LCM
static void maxLCMWithGivenSum(int X)
{
     
    // Variables to store the result
    int A, B;
 
    // If X is odd
    if ((X & 1) == 1)
    {
        A = X / 2;
        B = X / 2 + 1;
    }
 
    // If X is even
    else
    {
         
        // If floor(X/2) is even
        if ((X / 2) % 2 == 0)
        {
            A = X / 2 - 1;
            B = X / 2 + 1;
        }
 
        // If floor(X/2) is odd
        else
        {
            A = X / 2 - 2;
            B = X / 2 + 2;
        }
    }
     
    // Print the result
    Console.WriteLine(A + " " + B);
}
 
// Driver code
public static void Main(String[] args)
{
     
    // Given number
    int X = 30;
 
    // Function call
    maxLCMWithGivenSum(X);
}
}
 
// This code is contributed by sapnasingh4991


Javascript




<script>
 
// Javascript program of the above approach
 
// Function that print two numbers with
// the sum X and maximum possible LCM
function maxLCMWithGivenSum(X)
{
    // variables to store the result
    let A, B;
 
    // If X is odd
    if (X & 1) {
        A = X / 2;
        B = X / 2 + 1;
    }
 
    // If X is even
    else {
 
        // If floor(X/2) is even
        if ((X / 2) % 2 == 0) {
            A = X / 2 - 1;
            B = X / 2 + 1;
        }
 
        // If floor(X/2) is odd
        else {
            A = X / 2 - 2;
            B = X / 2 + 2;
        }
    }
 
    // Print the result
    document.write(A + " " + B + "<br>");
}
 
// Driver Code
 
    // Given Number
    let X = 30;
 
    // Function call
    maxLCMWithGivenSum(X);
 
// This code is contributed by Manoj
 
</script>


Output

13 17


Time Complexity: O(1)
Auxiliary Space: O(1)

Approach#2: Using math

This approach used in this code is a brute-force method to find the two numbers with the given sum X that have the maximum possible LCM. The code checks all possible pairs of numbers that sum up to X and calculates their LCM using the math.gcd() function. The code keeps track of the maximum LCM found so far and returns the pair of numbers that gives this maximum LCM.

Algorithm

1. Initialize a variable max_lcm to 0.
2. Loop over all possible pairs of numbers (i, j) such that i < j and i + j = X.
3. Calculate the LCM of i and j using the formula (i*j) // math.gcd(i, j).
4. If the calculated LCM is greater than max_lcm, update max_lcm and the pair of numbers num1 and num2 accordingly.
5. Return the pair of numbers num1 and num2.

C++




#include <iostream>
#include <algorithm>
#include <numeric>
 
using namespace std;
 
pair<int, int> findNumbersWithLCM(int X) {
    int maxLCM = 0;
    pair<int, int> result;
 
    for (int i = 1; i < X; i++) {
        for (int j = i + 1; j < X; j++) {
            if (i + j == X) {
                int lcm = (i * j) / __gcd(i, j); // Calculate LCM using the gcd function
                if (lcm > maxLCM) {
                    maxLCM = lcm;
                    result = {i, j};
                }
            }
        }
    }
     
    return result;
}
 
int main() {
    int X = 30;
    pair<int, int> result = findNumbersWithLCM(X);
    cout << result.first << " " << result.second << endl;
 
    return 0;
}


Python3




import math
def find_numbers_with_lcm(X):
    max_lcm = 0
    for i in range(1, X):
        for j in range(i+1, X):
            if i + j == X:
                lcm = (i*j) // math.gcd(i, j)
                if lcm > max_lcm:
                    max_lcm = lcm
                    num1, num2 = i, j
    return num1, num2
 
X = 30
num1, num2 = find_numbers_with_lcm(X)
print(num1, num2)


Javascript




// Javascript code for the above approach
 
function calculateGCD(a, b) {
    while (b !== 0) {
        const temp = b;
        b = a % b;
        a = temp;
    }
    return a;
}
 
function findNumbersWithLCM(X) {
    let maxLCM = 0;
    let num1 = 0;
    let num2 = 0;
 
    for (let i = 1; i < X; i++) {
        for (let j = i + 1; j < X; j++) {
            if (i + j === X) {
                const gcd = calculateGCD(i, j);
                const lcm = (i * j) / gcd;
                if (lcm > maxLCM) {
                    maxLCM = lcm;
                    num1 = i;
                    num2 = j;
                }
            }
        }
    }
 
    return [num1, num2];
}
 
const X = 30;
const [num1, num2] = findNumbersWithLCM(X);
console.log(num1, num2);


Output

13 17


Time Complexity: O(X^2) because it loops over all possible pairs of numbers (i, j) such that i < j and i + j = X.

Auxiliary Space: O(1) because it uses only a fixed number of variables regardless of the value of X.

Feeling lost in the world of random DSA topics, wasting time without progress? It’s time for a change! Join our DSA course, where we’ll guide you on an exciting journey to master DSA efficiently and on schedule.
Ready to dive in? Explore our Free Demo Content and join our DSA course, trusted by over 100,000 neveropen!

RELATED ARTICLES

Most Popular

Recent Comments